/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include namespace Opm { template MultisegmentWell:: MultisegmentWell(const Well* well, const int time_step, const Wells* wells) : Base(well, time_step, wells) , segment_perforations_(numberOfSegments()) , segment_inlets_(numberOfSegments()) , cell_perforation_depth_diffs_(number_of_perforations_, 0.0) , cell_perforation_pressure_diffs_(number_of_perforations_, 0.0) , perforation_segment_depth_diffs_(number_of_perforations_, 0.0) , segment_comp_initial_(numberOfSegments(), std::vector(numComponents(), 0.0)) , segment_densities_(numberOfSegments(), 0.0) , segment_viscosities_(numberOfSegments(), 0.0) , segment_mass_rates_(numberOfSegments(), 0.0) , segment_depth_diffs_(numberOfSegments(), 0.0) { // not handling solvent or polymer for now with multisegment well if (has_solvent) { OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet"); } if (has_polymer) { OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet"); } // since we decide to use the SegmentSet from the well parser. we can reuse a lot from it. // for other facilities needed but not available from parser, we need to process them here // initialize the segment_perforations_ const CompletionSet& completion_set = well_ecl_->getCompletions(current_step_); for (int perf = 0; perf < number_of_perforations_; ++perf) { const Completion& completion = completion_set.get(perf); const int segment_number = completion.getSegmentNumber(); const int segment_location = numberToLocation(segment_number); segment_perforations_[segment_location].push_back(perf); } // initialize the segment_inlets_ for (int seg = 0; seg < numberOfSegments(); ++seg) { const Segment& segment = segmentSet()[seg]; const int segment_number = segment.segmentNumber(); const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { const int segment_location = numberToLocation(segment_number); const int outlet_segment_location = numberToLocation(outlet_segment_number); segment_inlets_[outlet_segment_location].push_back(segment_location); } } // callcuate the depth difference between perforations and their segments perf_depth_.resize(number_of_perforations_, 0.); for (int seg = 0; seg < numberOfSegments(); ++seg) { const double segment_depth = segmentSet()[seg].depth(); for (const int perf : segment_perforations_[seg]) { perf_depth_[perf] = completion_set.get(perf).getCenterDepth(); perforation_segment_depth_diffs_[perf] = perf_depth_[perf] - segment_depth; } } // calculating the depth difference between the segment and its oulet_segments // for the top segment, we will make its zero unless we find other purpose to use this value for (int seg = 1; seg < numberOfSegments(); ++seg) { const double segment_depth = segmentSet()[seg].depth(); const int outlet_segment_number = segmentSet()[seg].outletSegment(); const Segment& outlet_segment = segmentSet()[numberToLocation(outlet_segment_number)]; const double outlet_depth = outlet_segment.depth(); segment_depth_diffs_[seg] = segment_depth - outlet_depth; } } template void MultisegmentWell:: init(const PhaseUsage* phase_usage_arg, const std::vector* active_arg, const std::vector& depth_arg, const double gravity_arg, const int num_cells) { Base::init(phase_usage_arg, active_arg, depth_arg, gravity_arg, num_cells); // TODO: for StandardWell, we need to update the perf depth here using depth_arg. // for MultisegmentWell, it is much more complicated. // It can be specified directly, it can be calculated from the segment depth, // it can also use the cell center, which is the same for StandardWell. // For the last case, should we update the depth with the depth_arg? For the // future, it can be a source of wrong result with Multisegment well. // An indicator from the opm-parser should indicate what kind of depth we should use here. // \Note: we do not update the depth here. And it looks like for now, we only have the option to use // specified perforation depth initMatrixAndVectors(num_cells); // calcuate the depth difference between the perforations and the perforated grid block for (int perf = 0; perf < number_of_perforations_; ++perf) { const int cell_idx = well_cells_[perf]; cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf]; } } template void MultisegmentWell:: initMatrixAndVectors(const int num_cells) const { duneB_.setBuildMode( OffDiagMatWell::row_wise ); duneC_.setBuildMode( OffDiagMatWell::row_wise ); duneD_.setBuildMode( DiagMatWell::row_wise ); // set the size and patterns for all the matrices and vectors // [A C^T [x = [ res // B D] x_well] res_well] // calculatiing the NNZ for duneD_ // NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets) { int nnz_d = numberOfSegments(); for (const std::vector& inlets : segment_inlets_) { nnz_d += 2 * inlets.size(); } duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d); } duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_); duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_); // we need to add the off diagonal ones for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) { // the number of the row corrspnds to the segment now const int seg = row.index(); // adding the item related to outlet relation const Segment& segment = segmentSet()[seg]; const int outlet_segment_number = segment.outletSegment(); if (outlet_segment_number > 0) { // if there is a outlet_segment const int outlet_segment_location = numberToLocation(outlet_segment_number); row.insert(outlet_segment_location); } // Add nonzeros for diagonal row.insert(seg); // insert the item related to its inlets for (const int& inlet : segment_inlets_[seg]) { row.insert(inlet); } } // make the C matrix for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : segment_perforations_[row.index()]) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } // make the B^T matrix for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) { // the number of the row corresponds to the segment number now. for (const int& perf : segment_perforations_[row.index()]) { const int cell_idx = well_cells_[perf]; row.insert(cell_idx); } } resWell_.resize( numberOfSegments() ); primary_variables_.resize(numberOfSegments()); primary_variables_evaluation_.resize(numberOfSegments()); } template void MultisegmentWell:: initPrimaryVariablesEvaluation() const { for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { primary_variables_evaluation_[seg][eq_idx] = 0.0; primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]); primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0); } } } template void MultisegmentWell:: assembleWellEq(Simulator& ebosSimulator, const ModelParameters& param, const double dt, WellState& well_state, bool only_wells) { const bool use_inner_iterations = param.use_inner_iterations_ms_wells_; if (use_inner_iterations) { iterateWellEquations(ebosSimulator, param, dt, well_state); } assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, only_wells); } template void MultisegmentWell:: updateWellStateWithTarget(const int current, WellState& well_state) const { // Updating well state bas on well control // Target values are used as initial conditions for BHP, THP, and SURFACE_RATE const double target = well_controls_iget_target(well_controls_, current); const double* distr = well_controls_iget_distr(well_controls_, current); switch (well_controls_iget_type(well_controls_, current)) { case BHP: { well_state.bhp()[index_of_well_] = target; const int top_segment_location = well_state.topSegmentLocation(index_of_well_); well_state.segPress()[top_segment_location] = well_state.bhp()[index_of_well_]; // TODO: similar to the way below to handle THP // we should not something related to thp here when there is thp constraint break; } case THP: { well_state.thp()[index_of_well_] = target; /* const Opm::PhaseUsage& pu = phaseUsage(); std::vector rates(3, 0.0); if (active()[ Water ]) { rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ]; } if (active()[ Oil ]) { rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ]; } if (active()[ Gas ]) { rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ]; } */ // const int table_id = well_controls_iget_vfp(well_controls_, current); // const double& thp = well_controls_iget_target(well_controls_, current); // const double& alq = well_controls_iget_alq(well_controls_, current); // TODO: implement calculateBhpFromThp function // well_state.bhp()[index_of_well_] = calculateBhpFromThp(rates, current); // also the top segment pressure /* const int top_segment_location = well_state.topSegmentLocation(index_of_well_); well_state.segPress()[top_segment_location] = well_state.bhp()[index_of_well_]; */ break; } case RESERVOIR_RATE: // intentional fall-through case SURFACE_RATE: // for the update of the rates, after we update the well rates, we can try to scale // the segment rates and perforation rates with the same factor // or the other way, we can use the same approach like the initialization of the well state, // we devide the well rates to update the perforation rates, then we update the segment rates based // on the perforation rates. // the second way is safer, since if the well control is changed, the first way will not guarantee the consistence // of between the segment rates and peforation rates // checking the number of the phases under control int numPhasesWithTargetsUnderThisControl = 0; for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.0) { numPhasesWithTargetsUnderThisControl += 1; } } assert(numPhasesWithTargetsUnderThisControl > 0); if (well_type_ == INJECTOR) { // assign target value as initial guess for injectors // only handles single phase control at the moment assert(numPhasesWithTargetsUnderThisControl == 1); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.) { well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target / distr[phase]; } else { well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = 0.; } } initSegmentRatesWithWellRates(well_state); } else if (well_type_ == PRODUCER) { // update the rates of phases under control based on the target, // and also update rates of phases not under control to keep the rate ratio, // assuming the mobility ratio does not change for the production wells double original_rates_under_phase_control = 0.0; for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.0) { original_rates_under_phase_control += well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] * distr[phase]; } } if (original_rates_under_phase_control != 0.0 ) { double scaling_factor = target / original_rates_under_phase_control; for (int phase = 0; phase < number_of_phases_; ++phase) { well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] *= scaling_factor; // scaling the segment rates with the same way with well rates const int top_segment_location = well_state.topSegmentLocation(index_of_well_); for (int seg = 0; seg < numberOfSegments(); ++seg) { well_state.segRates()[number_of_phases_ * (seg + top_segment_location) + phase] *= scaling_factor; } } } else { // scaling factor is not well defined when original_rates_under_phase_control is zero // separating targets equally between phases under control const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl; for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.0) { well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided / distr[phase]; } else { // this only happens for SURFACE_RATE control well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided; } } initSegmentRatesWithWellRates(well_state); } } break; } // end of switch updatePrimaryVariables(well_state); } template void MultisegmentWell:: initSegmentRatesWithWellRates(WellState& well_state) const { for (int phase = 0; phase < number_of_phases_; ++phase) { const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_; for (int perf = 0; perf < number_of_perforations_; ++perf) { well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate; } } const std::vector perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_, well_state.perfPhaseRates().begin() + number_of_phases_ * (first_perf_ + number_of_perforations_) ); std::vector segment_rates; WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_, 0, segment_rates); const int top_segment_location = well_state.topSegmentLocation(index_of_well_); std::copy(segment_rates.begin(), segment_rates.end(), well_state.segRates().begin() + number_of_phases_ * top_segment_location ); // we need to check the top segment rates should be same with the well rates } template typename MultisegmentWell::ConvergenceReport MultisegmentWell:: getWellConvergence(const Simulator& /* ebosSimulator */, const std::vector& B_avg, const ModelParameters& param) const { // assert((int(B_avg.size()) == numComponents()) || has_polymer); assert( (int(B_avg.size()) == numComponents()) ); // checking if any residual is NaN or too large. The two large one is only handled for the well flux std::vector> residual(numberOfSegments(), std::vector(numWellEq, 0.0)); for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]); } } std::vector maximum_residual(numWellEq, 0.0); ConvergenceReport report; // TODO: the following is a little complicated, maybe can be simplified in some way? for (int seg = 0; seg < numberOfSegments(); ++seg) { for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) { if (eq_idx < numComponents()) { // phase or component mass equations const double flux_residual = B_avg[eq_idx] * residual[seg][eq_idx]; // TODO: the report can not handle the segment number yet. if (std::isnan(flux_residual)) { report.nan_residual_found = true; const auto& phase_name = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(eq_idx)); const typename ConvergenceReport::ProblemWell problem_well = {name(), phase_name}; report.nan_residual_wells.push_back(problem_well); } else if (flux_residual > param.max_residual_allowed_) { report.too_large_residual_found = true; const auto& phase_name = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(eq_idx)); const typename ConvergenceReport::ProblemWell problem_well = {name(), phase_name}; report.nan_residual_wells.push_back(problem_well); } else { // it is a normal residual if (flux_residual > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = flux_residual; } } } else { // pressure equation // TODO: we should distinguish the rate control equations, bhp control equations // and the oridnary pressure equations const double pressure_residal = residual[seg][eq_idx]; const std::string eq_name("Pressure"); if (std::isnan(pressure_residal)) { report.nan_residual_found = true; const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name}; report.nan_residual_wells.push_back(problem_well); } else if (std::isinf(pressure_residal)) { report.too_large_residual_found = true; const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name}; report.nan_residual_wells.push_back(problem_well); } else { // it is a normal residual if (pressure_residal > maximum_residual[eq_idx]) { maximum_residual[eq_idx] = pressure_residal; } } } } } std::cout << " maximum_residual " << maximum_residual[0] << " " << maximum_residual[1] << " " << maximum_residual[2] << " " << maximum_residual[3] << std::endl; if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found // check convergence for flux residuals for ( int comp_idx = 0; comp_idx < numComponents(); ++comp_idx) { report.converged = report.converged && (maximum_residual[comp_idx] < param.tolerance_wells_); } report.converged = report.converged && (maximum_residual[SPres] < param.tolerance_pressure_ms_wells_); } else { // abnormal values found and no need to check the convergence report.converged = false; } return report; } template void MultisegmentWell:: apply(const BVector& x, BVector& Ax) const { BVectorWell Bx(duneB_.N()); duneB_.mv(x, Bx); // invDBx = duneD^-1 * Bx_ const BVectorWell invDBx = mswellhelpers::invDX(duneD_, Bx); // Ax = Ax - duneC_^T * invDBx duneC_.mmtv(invDBx,Ax); } template void MultisegmentWell:: apply(BVector& r) const { // invDrw_ = duneD^-1 * resWell_ const BVectorWell invDrw = mswellhelpers::invDX(duneD_, resWell_); // r = r - duneC_^T * invDrw duneC_.mmtv(invDrw, r); } template void MultisegmentWell:: recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param, WellState& well_state) const { BVectorWell xw(1); recoverSolutionWell(x, xw); updateWellState(xw, param, false, well_state); } template void MultisegmentWell:: computeWellPotentials(const Simulator& /* ebosSimulator */, const WellState& /* well_state */, std::vector& /* well_potentials */) { OPM_THROW(std::runtime_error, "well potential calculation for multisegment wells is not supported yet"); } template void MultisegmentWell:: updatePrimaryVariables(const WellState& well_state) const { // TODO: not handling solvent or polymer for now. // TODO: to test using rate conversion coefficients to see if it will be better than // this default one // the location of the top segment in the WellState const int top_segment_location = well_state.topSegmentLocation(index_of_well_); const std::vector& segment_rates = well_state.segRates(); const PhaseUsage& pu = phaseUsage(); for (int seg = 0; seg < numberOfSegments(); ++seg) { // calculate the total rate for each segment double total_seg_rate = 0.0; const int seg_location = top_segment_location + seg; // the segment pressure primary_variables_[seg][SPres] = well_state.segPress()[seg_location]; // TODO: under what kind of circustances, the following will be wrong? // the definition of g makes the gas phase is always the last phase for (int p = 0; p < number_of_phases_; p++) { total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_location + p]; } primary_variables_[seg][GTotal] = total_seg_rate; if (std::abs(total_seg_rate) > 0.) { if (active()[Water]) { const int water_pos = pu.phase_pos[Water]; primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_location + water_pos] / total_seg_rate; } if (active()[Gas]) { const int gas_pos = pu.phase_pos[Gas]; primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_location + gas_pos] / total_seg_rate; } } else { // total_seg_rate == 0 if (well_type_ == INJECTOR) { // only single phase injection handled const double* distr = well_controls_get_current_distr(well_controls_); if (active()[Water]) { if (distr[pu.phase_pos[Water]] > 0.0) { primary_variables_[seg][WFrac] = 1.0; } else { primary_variables_[seg][WFrac] = 0.0; } } if (active()[Gas]) { if (distr[pu.phase_pos[Gas]] > 0.0) { // TODO: not handling solvent here yet primary_variables_[seg][GFrac] = 1.0; } else { primary_variables_[seg][GFrac] = 0.0; } } } else if (well_type_ == PRODUCER) { // producers if (active()[Water]) { primary_variables_[seg][WFrac] = 1.0 / number_of_phases_; } if (active()[Gas]) { primary_variables_[seg][GFrac] = 1.0 / number_of_phases_; } } } } } template void MultisegmentWell:: recoverSolutionWell(const BVector& x, BVectorWell& xw) const { BVectorWell resWell = resWell_; // resWell = resWell - B * x duneB_.mmv(x, resWell); // xw = D^-1 * resWell xw = mswellhelpers::invDX(duneD_, resWell); } template void MultisegmentWell:: solveEqAndUpdateWellState(const ModelParameters& param, WellState& well_state) { // We assemble the well equations, then we check the convergence, // which is why we do not put the assembleWellEq here. const BVectorWell dx_well = mswellhelpers::invDX(duneD_, resWell_); updateWellState(dx_well, param, false, well_state); } template void MultisegmentWell:: computePerfCellPressDiffs(const Simulator& ebosSimulator) { for (int perf = 0; perf < number_of_perforations_; ++perf) { std::vector kr(number_of_phases_, 0.0); std::vector density(number_of_phases_, 0.0); const int cell_idx = well_cells_[perf]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); const auto& fs = intQuants.fluidState(); double sum_kr = 0.; const PhaseUsage& pu = phaseUsage(); if (pu.phase_used[BlackoilPhases::Aqua]) { const int water_pos = pu.phase_pos[BlackoilPhases::Aqua]; kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value(); sum_kr += kr[water_pos]; density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value(); } if (pu.phase_used[BlackoilPhases::Liquid]) { const int oil_pos = pu.phase_pos[BlackoilPhases::Liquid]; kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value(); sum_kr += kr[oil_pos]; density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value(); } if (pu.phase_used[BlackoilPhases::Vapour]) { const int gas_pos = pu.phase_pos[BlackoilPhases::Vapour]; kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value(); sum_kr += kr[gas_pos]; density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value(); } assert(sum_kr != 0.); // calculate the average density double average_density = 0.; for (int p = 0; p < number_of_phases_; ++p) { average_density += kr[p] * density[p]; } average_density /= sum_kr; cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf]; } } template void MultisegmentWell:: computeInitialComposition() { for (int seg = 0; seg < numberOfSegments(); ++seg) { // TODO: probably it should be numWellEq -1 more accurately, // while by meaning it should be num_comp for (int comp_idx = 0; comp_idx < numComponents(); ++comp_idx) { segment_comp_initial_[seg][comp_idx] = surfaceVolumeFraction(seg, comp_idx).value(); } } } template void MultisegmentWell:: updateWellState(const BVectorWell& dwells, const BlackoilModelParameters& param, const bool inner_iteration, WellState& well_state) const { const bool use_inner_iterations = param.use_inner_iterations_ms_wells_; const double relaxation_factor = (use_inner_iterations && inner_iteration) ? 0.2 : 1.0; const double dFLimit = param.dwell_fraction_max_; const double max_pressure_change = param.max_pressure_change_ms_wells_; const std::vector > old_primary_variables = primary_variables_; for (int seg = 0; seg < numberOfSegments(); ++seg) { if (active()[ Water ]) { const int sign = dwells[seg][WFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]), relaxation_factor * dFLimit); primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited; } if (active()[ Gas ]) { const int sign = dwells[seg][GFrac] > 0. ? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]), relaxation_factor * dFLimit); primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited; } // handling the overshooting or undershooting of the fractions processFractions(seg); // update the segment pressure { const int sign = dwells[seg][SPres] > 0.? 1 : -1; const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]), relaxation_factor * max_pressure_change); primary_variables_[seg][SPres] = old_primary_variables[seg][SPres] - dx_limited; } // update the total rate // TODO: should we have a limitation of the total rate change? { primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal]; } // TODO: not handling solvent related for now } updateWellStateFromPrimaryVariables(well_state); } template void MultisegmentWell:: calculateExplicitQuantities(const Simulator& ebosSimulator, const WellState& /* well_state */) { computePerfCellPressDiffs(ebosSimulator); computeInitialComposition(); } template const SegmentSet& MultisegmentWell:: segmentSet() const { return well_ecl_->getSegmentSet(current_step_); } template int MultisegmentWell:: numberOfSegments() const { return segmentSet().numberSegment(); } template int MultisegmentWell:: numberOfPerforations() const { return segmentSet().number_of_perforations_; } template WellSegment::CompPressureDropEnum MultisegmentWell:: compPressureDrop() const { return segmentSet().compPressureDrop(); } template WellSegment::MultiPhaseModelEnum MultisegmentWell:: multiphaseModel() const { return segmentSet().multiPhaseModel(); } template int MultisegmentWell:: numberToLocation(const int segment_number) const { return segmentSet().numberToLocation(segment_number); } template typename MultisegmentWell::EvalWell MultisegmentWell:: volumeFraction(const int seg, const int comp_idx) const { const PhaseUsage& pu = phaseUsage(); if (active()[Water] && comp_idx == pu.phase_pos[Water]) { return primary_variables_evaluation_[seg][WFrac]; } if (active()[Gas] && comp_idx == pu.phase_pos[Gas]) { return primary_variables_evaluation_[seg][GFrac]; } // TODO: not handling solvent for now // if (has_solvent && compIdx == contiSolventEqIdx) { // return primary_variables_evaluation_[seg][SFrac]; // } // Oil fraction EvalWell oil_fraction = 1.0; if (active()[Water]) { oil_fraction -= primary_variables_evaluation_[seg][WFrac]; } if (active()[Gas]) { oil_fraction -= primary_variables_evaluation_[seg][GFrac]; } /* if (has_solvent) { oil_fraction -= primary_variables_evaluation_[seg][SFrac]; } */ return oil_fraction; } template typename MultisegmentWell::EvalWell MultisegmentWell:: volumeFractionScaled(const int seg, const int comp_idx) const { // For reservoir rate control, the distr in well control is used for the // rate conversion coefficients. For the injection well, only the distr of the injection // phase is not zero. const double scale = scalingFactor(comp_idx); if (scale > 0.) { return volumeFraction(seg, comp_idx) / scale; } return volumeFraction(seg, comp_idx); } template typename MultisegmentWell::EvalWell MultisegmentWell:: surfaceVolumeFraction(const int seg, const int comp_idx) const { EvalWell sum_volume_fraction_scaled = 0.; const int num_comp = numComponents(); for (int idx = 0; idx < num_comp; ++idx) { sum_volume_fraction_scaled += volumeFractionScaled(seg, idx); } assert(sum_volume_fraction_scaled.value() != 0.); return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled; } template void MultisegmentWell:: computePerfRate(const IntensiveQuantities& int_quants, const std::vector& mob_perfcells, const int seg, const int perf, const EvalWell& segment_pressure, const bool& allow_cf, std::vector& cq_s) const { const int num_comp = numComponents(); std::vector cmix_s(num_comp, 0.0); // the composition of the components inside wellbore for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } const auto& fs = int_quants.fluidState(); const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx)); const EvalWell rs = extendEval(fs.Rs()); const EvalWell rv = extendEval(fs.Rv()); // not using number_of_phases_ because of solvent std::vector b_perfcells(num_comp, 0.0); for (int phase = 0; phase < number_of_phases_; ++phase) { const int phase_idx_ebos = flowPhaseToEbosPhaseIdx(phase); b_perfcells[phase] = extendEval(fs.invB(phase_idx_ebos)); } // TODO: not handling solvent for now // if (has_solvent) { // b_perfcells[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor()); // } // pressure difference between the segment and the perforation const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf]; // pressure difference between the perforation and the grid cell const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf]; // Pressure drawdown (also used to determine direction of flow) // TODO: not 100% sure about the sign of the seg_perf_press_diff const EvalWell drawdown = (pressure_cell + cell_perf_press_diff) - (segment_pressure + perf_seg_press_diff); const Opm::PhaseUsage& pu = phaseUsage(); // producing perforations if ( drawdown > 0.0) { // Do nothing is crossflow is not allowed if (!allow_cf && well_type_ == INJECTOR) { return; } // compute component volumetric rates at standard conditions for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown); cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p; } if (active()[Oil] && active()[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; const EvalWell cq_s_oil = cq_s[oilpos]; const EvalWell cq_s_gas = cq_s[gaspos]; cq_s[gaspos] += rs * cq_s_oil; cq_s[oilpos] += rv * cq_s_gas; } } else { // injecting perforations // Do nothing if crossflow is not allowed if (!allow_cf && well_type_ == PRODUCER) { return; } // for injecting perforations, we use total mobility EvalWell total_mob = mob_perfcells[0]; for (int comp_idx = 1; comp_idx < num_comp; ++comp_idx) { total_mob += mob_perfcells[comp_idx]; } // injection perforations total volume rates const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown); // compute volume ratio between connection and at standard conditions EvalWell volume_ratio = 0.0; if (active()[Water]) { const int watpos = pu.phase_pos[Water]; volume_ratio += cmix_s[watpos] / b_perfcells[watpos]; } // TODO: not handling // if (has_solvent) { // volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx]; // } if (active()[Oil] && active()[Gas]) { const int oilpos = pu.phase_pos[Oil]; const int gaspos = pu.phase_pos[Gas]; // Incorporate RS/RV factors if both oil and gas active // TODO: not sure we use rs rv from the perforation cells when handling injecting perforations // basically, for injecting perforations, the wellbore is the upstreaming side. const EvalWell d = 1.0 - rv * rs; if (d.value() == 0.0) { OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation" << " with rs " << rs << " and rv " << rv); } const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d; volume_ratio += tmp_oil / b_perfcells[oilpos]; const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d; volume_ratio += tmp_gas / b_perfcells[gaspos]; } else { // not having gas and oil at the same time if (active()[Oil]) { const int oilpos = pu.phase_pos[Oil]; volume_ratio += cmix_s[oilpos] / b_perfcells[oilpos]; } if (active()[Gas]) { const int gaspos = pu.phase_pos[Gas]; volume_ratio += cmix_s[gaspos] / b_perfcells[gaspos]; } } // injecting connections total volumerates at standard conditions EvalWell cqt_is = cqt_i / volume_ratio; for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is; } } // end for injection perforations } template typename MultisegmentWell::EvalWell MultisegmentWell:: extendEval(const Eval& in) const { EvalWell out = 0.0; out.setValue(in.value()); for(int eq_idx = 0; eq_idx < numEq;++eq_idx) { out.setDerivative(eq_idx, in.derivative(eq_idx)); } return out; } template void MultisegmentWell:: computeSegmentFluidProperties(const Simulator& ebosSimulator) { // TODO: the concept of phases and components are rather confusing in this function. // needs to be addressed sooner or later. // get the temperature for later use. It is only useful when we are not handling // thermal related simulation // basically, it is a single value for all the segments EvalWell temperature; // not sure how to handle the pvt region related to segment // for the current approach, we use the pvt region of the first perforated cell // although there are some text indicating using the pvt region of the lowest // perforated cell // TODO: later to investigate how to handle the pvt region int pvt_region_index; { // using the first perforated cell const int cell_idx = well_cells_[0]; const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value()); pvt_region_index = fs.pvtRegionIndex(); } std::vector surf_dens(number_of_phases_); // Surface density. // not using num_comp here is because solvent can be component for (int phase = 0; phase < number_of_phases_; ++phase) { surf_dens[phase] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx(phase), pvt_region_index ); } const int num_comp = numComponents(); const Opm::PhaseUsage& pu = phaseUsage(); for (int seg = 0; seg < numberOfSegments(); ++seg) { // the compostion of the components inside wellbore under surface condition std::vector mix_s(num_comp, 0.0); for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx); } std::vector b(num_comp, 0.0); // it is the phase viscosities asked for std::vector visc(number_of_phases_, 0.0); const EvalWell seg_pressure = getSegmentPressure(seg); if (pu.phase_used[BlackoilPhases::Aqua]) { // TODO: what is the difference between Water and BlackoilPhases::Aqua? const int water_pos = pu.phase_pos[BlackoilPhases::Aqua]; b[water_pos] = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[water_pos] = FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure); } EvalWell rv(0.0); // gas phase if (pu.phase_used[BlackoilPhases::Vapour]) { const int gaspos = pu.phase_pos[BlackoilPhases::Vapour]; if (pu.phase_used[BlackoilPhases::Liquid]) { const int oilpos = pu.phase_pos[BlackoilPhases::Liquid]; const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[oilpos] > 0.0) { if (mix_s[gaspos] > 0.0) { rv = mix_s[oilpos] / mix_s[gaspos]; } if (rv > rvmax) { rv = rvmax; } b[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv); visc[gaspos] = FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv); } else { // no oil exists b[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gaspos] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[gaspos] = FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } EvalWell rs(0.0); // oil phase if (pu.phase_used[BlackoilPhases::Liquid]) { const int oilpos = pu.phase_pos[BlackoilPhases::Liquid]; if (pu.phase_used[BlackoilPhases::Liquid]) { const int gaspos = pu.phase_pos[BlackoilPhases::Vapour]; const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure); if (mix_s[gaspos] > 0.0) { if (mix_s[oilpos] > 0.0) { rs = mix_s[gaspos] / mix_s[oilpos]; } if (rs > rsmax) { rs = rsmax; } b[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs); visc[oilpos] = FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs); } else { // no oil exists b[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilpos] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } else { // no Liquid phase // it is the same with zero mix_s[Oil] b[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure); visc[oilpos] = FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure); } } std::vector mix(mix_s); if (pu.phase_used[BlackoilPhases::Liquid] && pu.phase_used[BlackoilPhases::Vapour]) { const int gaspos = pu.phase_pos[BlackoilPhases::Vapour]; const int oilpos = pu.phase_pos[BlackoilPhases::Liquid]; if (rs != 0.0) { // rs > 0.0? mix[gaspos] = (mix_s[gaspos] - mix_s[oilpos] * rs) / (1. - rs * rv); } if (rv != 0.0) { // rv > 0.0? mix[oilpos] = (mix_s[oilpos] - mix_s[gaspos] * rv) / (1. - rs * rv); } } EvalWell volrat(0.0); for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { volrat += mix[comp_idx] / b[comp_idx]; } segment_viscosities_[seg] = 0.; // calculate the average viscosity for (int p = 0; p < number_of_phases_; ++p) { const EvalWell phase_fraction = mix[p] / b[p] / volrat; segment_viscosities_[seg] += visc[p] * phase_fraction; } // TODO: not handling solvent for now. EvalWell density(0.0); for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { density += surf_dens[comp_idx] * mix_s[comp_idx]; } segment_densities_[seg] = density / volrat; // calculate the mass rates segment_mass_rates_[seg] = 0.; for (int phase = 0; phase < number_of_phases_; ++phase) { const EvalWell rate = getSegmentRate(seg, phase); segment_mass_rates_[seg] += rate * surf_dens[phase]; } } } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentPressure(const int seg) const { return primary_variables_evaluation_[seg][SPres]; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentRate(const int seg, const int comp_idx) const { return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx); } template typename MultisegmentWell::EvalWell MultisegmentWell:: getSegmentGTotal(const int seg) const { return primary_variables_evaluation_[seg][GTotal]; } template void MultisegmentWell:: getMobility(const Simulator& ebosSimulator, const int perf, std::vector& mob) const { // TODO: most of this function, if not the whole function, can be moved to the base class const int np = number_of_phases_; const int cell_idx = well_cells_[perf]; assert (int(mob.size()) == numComponents()); const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& materialLawManager = ebosSimulator.problem().materialLawManager(); // either use mobility of the perforation cell or calcualte its own // based on passing the saturation table index const int satid = saturation_table_number_[perf] - 1; const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx); if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell for (int phase = 0; phase < np; ++phase) { int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase); mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx)); } // if (has_solvent) { // mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility()); // } } else { const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx); Eval relativePerms[3] = { 0.0, 0.0, 0.0 }; MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState()); // reset the satnumvalue back to original materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx); // compute the mobility for (int phase = 0; phase < np; ++phase) { int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase); mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx)); } // this may not work if viscosity and relperms has been modified? // if (has_solvent) { // OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent"); // } } // modify the water mobility if polymer is present // if (has_polymer) { // assume fully mixture for wells. // EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration()); // if (well_type_ == INJECTOR) { // const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(intQuants.pvtRegionIndex()); // mob[ Water ] /= (extendEval(intQuants.waterViscosityCorrection()) * viscosityMultiplier.eval(polymerConcentration, /*extrapolate=*/true) ); // } // TODO: not sure if we should handle shear calculation with MS well // } } template void MultisegmentWell:: assembleControlEq() const { EvalWell control_eq(0.0); switch (well_controls_get_current_type(well_controls_)) { case THP: // not handling this one for now { OPM_THROW(std::runtime_error, "Not handling THP control for Multisegment wells for now"); } case BHP: { const double target_bhp = well_controls_get_current_target(well_controls_); control_eq = getSegmentPressure(0) - target_bhp; break; } case SURFACE_RATE: { // finding if it is a single phase control or combined phase control int number_phases_under_control = 0; const double* distr = well_controls_get_current_distr(well_controls_); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.0) { ++number_phases_under_control; } } assert(number_phases_under_control > 0); const std::vector g = {1.0, 1.0, 0.01}; const double target_rate = well_controls_get_current_target(well_controls_); // TODO: the two situations below should be able to be merged to be handled as one situation if (number_phases_under_control == 1) { // single phase control for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.) { // under the control of this phase control_eq = getSegmentGTotal(0) * volumeFraction(0, phase) - g[phase] * target_rate; break; } } } else { // multiphase rate control EvalWell rate_for_control(0.0); const EvalWell G_total = getSegmentGTotal(0); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.) { rate_for_control += G_total * volumeFractionScaled(0, phase); } } // TODO: maybe the following equation can be scaled a little bit for gas phase control_eq = rate_for_control - target_rate; } break; } case RESERVOIR_RATE: { EvalWell rate_for_control(0.0); // reservoir rate const double* distr = well_controls_get_current_distr(well_controls_); for (int phase = 0; phase < number_of_phases_; ++phase) { if (distr[phase] > 0.) { rate_for_control += getSegmentGTotal(0) * volumeFraction(0, phase); } } const double target_rate = well_controls_get_current_target(well_controls_); control_eq = rate_for_control - target_rate; break; } default: OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name()); } // using control_eq to update the matrix and residuals resWell_[0][SPres] = control_eq.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq); } } template void MultisegmentWell:: assemblePressureEq(const int seg) const { assert(seg != 0); // not top segment // for top segment, the well control equation will be used. EvalWell pressure_equation = getSegmentPressure(seg); // we need to handle the pressure difference between the two segments // we only consider the hydrostatic pressure loss first pressure_equation -= getHydroPressureLoss(seg); if (frictionalPressureLossConsidered()) { pressure_equation -= getFrictionPressureLoss(seg); } resWell_[seg][SPres] = pressure_equation.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq); } // contribution from the outlet segment const int outlet_segment_location = numberToLocation(segmentSet()[seg].outletSegment()); const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_location); resWell_[seg][SPres] -= outlet_pressure.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][outlet_segment_location][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq); } if (accelerationalPressureLossConsidered()) { handleAccelerationPressureLoss(seg); } } template typename MultisegmentWell::EvalWell MultisegmentWell:: getHydroPressureLoss(const int seg) const { return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg]; } template typename MultisegmentWell::EvalWell MultisegmentWell:: getFrictionPressureLoss(const int seg) const { const EvalWell mass_rate = segment_mass_rates_[seg]; const EvalWell density = segment_densities_[seg]; const EvalWell visc = segment_viscosities_[seg]; const int outlet_segment_location = numberToLocation(segmentSet()[seg].outletSegment()); const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_location].totalLength(); assert(length > 0.); const double roughness = segmentSet()[seg].roughness(); const double area = segmentSet()[seg].crossArea(); const double diameter = segmentSet()[seg].internalDiameter(); const double sign = mass_rate < 0. ? 1.0 : - 1.0; return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc); } template void MultisegmentWell:: handleAccelerationPressureLoss(const int seg) const { // TODO: this pressure loss is not significant enough to be well tested yet. // handle the out velcocity head const double area = segmentSet()[seg].crossArea(); const EvalWell mass_rate = segment_mass_rates_[seg]; const EvalWell density = segment_densities_[seg]; const EvalWell out_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density); resWell_[seg][SPres] -= out_velocity_head.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][seg][SPres][pv_idx] -= out_velocity_head.derivative(pv_idx + numEq); } // calcuate the maximum cross-area among the segment and its inlet segments double max_area = area; for (const int inlet : segment_inlets_[seg]) { const double inlet_area = segmentSet()[inlet].crossArea(); if (inlet_area > max_area) { max_area = inlet_area; } } // handling the velocity head of intlet segments for (const int inlet : segment_inlets_[seg]) { const EvalWell density = segment_densities_[inlet]; const EvalWell mass_rate = segment_mass_rates_[inlet]; const EvalWell inlet_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density); resWell_[seg][SPres] += inlet_velocity_head.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][inlet][SPres][pv_idx] += inlet_velocity_head.derivative(pv_idx + numEq); } } } template void MultisegmentWell:: processFractions(const int seg) const { const PhaseUsage& pu = phaseUsage(); std::vector fractions(number_of_phases_, 0.0); assert( active()[Oil] ); const int oil_pos = pu.phase_pos[Oil]; fractions[oil_pos] = 1.0; if ( active()[Water] ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( active()[Gas] ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } // TODO: not handling solvent related if (active()[Water]) { const int water_pos = pu.phase_pos[Water]; if (fractions[water_pos] < 0.0) { if ( active()[Gas] ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]); } fractions[oil_pos] /= (1.0 - fractions[water_pos]); fractions[water_pos] = 0.0; } } if (active()[Gas]) { const int gas_pos = pu.phase_pos[Gas]; if (fractions[gas_pos] < 0.0) { if ( active()[Water] ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]); } fractions[oil_pos] /= (1.0 - fractions[gas_pos]); fractions[gas_pos] = 0.0; } } if (fractions[oil_pos] < 0.0) { if ( active()[Water] ) { fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]); } if ( active()[Gas] ) { fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]); } fractions[oil_pos] = 0.0; } if ( active()[Water] ) { primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]]; } if ( active()[Gas] ) { primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]]; } } template void MultisegmentWell:: updateWellStateFromPrimaryVariables(WellState& well_state) const { const PhaseUsage& pu = phaseUsage(); assert( active()[Oil] ); const int oil_pos = pu.phase_pos[Oil]; for (int seg = 0; seg < numberOfSegments(); ++seg) { std::vector fractions(number_of_phases_, 0.0); fractions[oil_pos] = 1.0; if ( active()[Water] ) { const int water_pos = pu.phase_pos[Water]; fractions[water_pos] = primary_variables_[seg][WFrac]; fractions[oil_pos] -= fractions[water_pos]; } if ( active()[Gas] ) { const int gas_pos = pu.phase_pos[Gas]; fractions[gas_pos] = primary_variables_[seg][GFrac]; fractions[oil_pos] -= fractions[gas_pos]; } // convert the fractions to be Q_p / G_total to calculate the phase rates for (int p = 0; p < number_of_phases_; ++p) { const double scale = scalingFactor(p); // for injection wells, there should only one non-zero scaling factor if (scale > 0.) { fractions[p] /= scale; } else { // this should only happens to injection wells fractions[p] = 0.; } } // calculate the phase rates based on the primary variables const double g_total = primary_variables_[seg][GTotal]; const int top_segment_location = well_state.topSegmentLocation(index_of_well_); for (int p = 0; p < number_of_phases_; ++p) { const double phase_rate = g_total * fractions[p]; well_state.segRates()[(seg + top_segment_location) * number_of_phases_ + p] = phase_rate; if (seg == 0) { // top segment well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate; } } // update the segment pressure well_state.segPress()[seg + top_segment_location] = primary_variables_[seg][SPres]; if (seg == 0) { // top segment well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_location]; } } } template double MultisegmentWell:: scalingFactor(const int comp_idx) const { const double* distr = well_controls_get_current_distr(well_controls_); if (well_controls_get_current_type(well_controls_) == RESERVOIR_RATE) { // if (has_solvent && phaseIdx == contiSolventEqIdx ) // OPM_THROW(std::runtime_error, "RESERVOIR_RATE control in combination with solvent is not implemented"); return distr[comp_idx]; } const PhaseUsage& pu = phaseUsage(); if (active()[Water] && pu.phase_pos[Water] == comp_idx) return 1.0; if (active()[Oil] && pu.phase_pos[Oil] == comp_idx) return 1.0; if (active()[Gas] && pu.phase_pos[Gas] == comp_idx) return 0.01; // if (has_solvent && phaseIdx == contiSolventEqIdx ) // return 0.01; // we should not come this far assert(false); return 1.0; } template bool MultisegmentWell:: frictionalPressureLossConsidered() const { // HF- and HFA needs to consider frictional pressure loss return (segmentSet().compPressureDrop() != WellSegment::H__); } template bool MultisegmentWell:: accelerationalPressureLossConsidered() const { return (segmentSet().compPressureDrop() == WellSegment::HFA); } template void MultisegmentWell:: iterateWellEquations(Simulator& ebosSimulator, const ModelParameters& param, const double dt, WellState& well_state) { // basically, it only iterate through the equations. // we update the primary variables // if converged, we can update the well_state. // the function updateWellState() should have a flag to show // if we will update the well state. const int max_iter_number = param.max_inner_iter_ms_wells_; int it = 0; for (; it < max_iter_number; ++it) { std::cout << " iterateWellEquations it " << it << std::endl; assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, true); const BVectorWell dx_well = mswellhelpers::invDX(duneD_, resWell_); // TODO: use these small values for now, not intend to reach the convergence // in this stage, but, should we? // We should try to avoid hard-code values in the code. // If we want to use the real one, we need to find a way to get them. // const std::vector B {0.8, 0.8, 0.008}; const std::vector B {0.5, 0.5, 0.005}; const ConvergenceReport report = getWellConvergence(ebosSimulator, B, param); if (report.converged) { std::cout << " converged in iterateWellEquations " << std::endl; break; } updateWellState(dx_well, param, true, well_state); initPrimaryVariablesEvaluation(); } // TODO: maybe we should not use these values if they are not converged. } template void MultisegmentWell:: assembleWellEqWithoutIteration(Simulator& ebosSimulator, const double dt, WellState& well_state, bool only_wells) { // calculate the fluid properties needed. computeSegmentFluidProperties(ebosSimulator); // clear all entries if (!only_wells) { duneB_ = 0.0; duneC_ = 0.0; } duneD_ = 0.0; resWell_ = 0.0; // for the black oil cases, there will be four equations, // the first three of them are the mass balance equations, the last one is the pressure equations. // // but for the top segment, the pressure equation will be the well control equation, and the other three will be the same. auto& ebosJac = ebosSimulator.model().linearizer().matrix(); auto& ebosResid = ebosSimulator.model().linearizer().residual(); const bool allow_cf = getAllowCrossFlow(); const int nseg = numberOfSegments(); const int num_comp = numComponents(); for (int seg = 0; seg < nseg; ++seg) { // calculating the accumulation term // TODO: without considering the efficiencty factor for now // volume of the segment { const double volume = segmentSet()[seg].volume(); // for each component for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { EvalWell accumulation_term = volume / dt * (surfaceVolumeFraction(seg, comp_idx) - segment_comp_initial_[seg][comp_idx]) + getSegmentRate(seg, comp_idx); resWell_[seg][comp_idx] += accumulation_term.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq); } } } // considering the contributions from the inlet segments { for (const int inlet : segment_inlets_[seg]) { for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { const EvalWell inlet_rate = getSegmentRate(inlet, comp_idx); resWell_[seg][comp_idx] -= inlet_rate.value(); for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { duneD_[seg][inlet][comp_idx][pv_idx] -= inlet_rate.derivative(pv_idx + numEq); } } } } // calculating the perforation rate for each perforation that belongs to this segment const EvalWell seg_pressure = getSegmentPressure(seg); for (const int perf : segment_perforations_[seg]) { const int cell_idx = well_cells_[perf]; const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0)); std::vector mob(num_comp, 0.0); getMobility(ebosSimulator, perf, mob); std::vector cq_s(num_comp, 0.0); computePerfRate(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s); for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) { // the cq_s entering mass balance equations need to consider the efficiency factors. const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_; if (!only_wells) { // subtract sum of component fluxes in the reservoir equation. // need to consider the efficiency factor // TODO: the name of the function flowPhaseToEbosCompIdx is prolematic, since the input // is a component index :D ebosResid[cell_idx][flowPhaseToEbosCompIdx(comp_idx)] -= cq_s_effective.value(); } // subtract sum of phase fluxes in the well equations. resWell_[seg][comp_idx] -= cq_s_effective.value(); // assemble the jacobians for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) { if (!only_wells) { // also need to consider the efficiency factor when manipulating the jacobians. duneC_[seg][cell_idx][pv_idx][flowPhaseToEbosCompIdx(comp_idx)] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix } // the index name for the D should be eq_idx / pv_idx duneD_[seg][seg][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx + numEq); } for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) { if (!only_wells) { // also need to consider the efficiency factor when manipulating the jacobians. ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(comp_idx)][pv_idx] -= cq_s_effective.derivative(pv_idx); duneB_[seg][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx); } } } // TODO: we should save the perforation pressure and preforation rates? // we do not use it in the simulation for now, while we might need them if // we handle the pressure in SEG mode. } // the fourth dequation, the pressure drop equation if (seg == 0) { // top segment, pressure equation is the control equation assembleControlEq(); } else { assemblePressureEq(seg); } } } }