/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_DYNAMIC_BOOST_TEST #define BOOST_TEST_DYN_LINK #endif #define BOOST_TEST_MODULE AutoDiffBlockTest #include "AutoDiffBlock.hpp" #include #include #include namespace { template bool operator ==(const Eigen::SparseMatrix& A, const Eigen::SparseMatrix& B) { // Two SparseMatrices are equal if // 0) They have the same ordering (enforced by equal types) // 1) They have the same outer and inner dimensions // 2) They have the same number of non-zero elements // 3) They have the same sparsity structure // 4) The non-zero elements are equal // 1) Outer and inner dimensions bool eq = (A.outerSize() == B.outerSize()); eq = eq && (A.innerSize() == B.innerSize()); // 2) Equal number of non-zero elements eq = eq && (A.nonZeros() == B.nonZeros()); for (typename Eigen::SparseMatrix::Index k0 = 0, kend = A.outerSize(); eq && (k0 < kend); ++k0) { for (typename Eigen::SparseMatrix::InnerIterator iA(A, k0), iB(B, k0); eq && (iA && iB); ++iA, ++iB) { // 3) Sparsity structure eq = (iA.row() == iB.row()) && (iA.col() == iB.col()); // 4) Equal non-zero elements eq = eq && (iA.value() == iB.value()); } } return eq; // Note: Investigate implementing this operator as // return A.cwiseNotEqual(B).count() == 0; } } BOOST_AUTO_TEST_CASE(ConstantInitialisation) { typedef AutoDiff::ForwardBlock ADB; std::vector blocksizes = { 3, 1, 2 }; ADB::V v(3); v << 0.2, 1.2, 13.4; ADB a = ADB::constant(v, blocksizes); BOOST_REQUIRE(a.value().matrix() == v.matrix()); const std::vector& J = a.derivative(); for (std::vector::const_iterator b = J.begin(), e = J.end(); b != e; ++b) { BOOST_REQUIRE(b->nonZeros() == 0); } } BOOST_AUTO_TEST_CASE(VariableInitialisation) { typedef AutoDiff::ForwardBlock ADB; std::vector blocksizes = { 3, 1, 2 }; ADB::V v(3); v << 1.0, 2.2, 3.4; enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 }; ADB x = ADB::variable(FirstVar, v, blocksizes); BOOST_REQUIRE(x.value().matrix() == v.matrix()); const std::vector& J = x.derivative(); BOOST_REQUIRE(J[0].nonZeros() == v.size()); const Eigen::Diagonal& d = J[0].diagonal(); BOOST_REQUIRE((d.array() == 1.0).all()); for (std::vector::const_iterator b = J.begin() + 1, e = J.end(); b != e; ++b) { BOOST_REQUIRE(b->nonZeros() == 0); } } BOOST_AUTO_TEST_CASE(FunctionInitialisation) { typedef AutoDiff::ForwardBlock ADB; std::vector blocksizes = { 3, 1, 2 }; std::vector::size_type num_blocks = blocksizes.size(); enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 }; ADB::V v(3); v << 1.0, 2.2, 3.4; std::vector jacs(num_blocks); for (std::vector::size_type j = 0; j < num_blocks; ++j) { jacs[j] = ADB::M(blocksizes[FirstVar], blocksizes[j]); jacs[j].insert(0,0) = -1.0; } ADB f = ADB::function(v, jacs); BOOST_REQUIRE(f.value().matrix() == v.matrix()); const std::vector& J = f.derivative(); for (std::vector::const_iterator bf = J.begin(), ef = J.end(), bj = jacs.begin(); bf != ef; ++bf, ++bj) { BOOST_CHECK(*bf == *bj); } } BOOST_AUTO_TEST_CASE(Addition) { typedef AutoDiff::ForwardBlock ADB; std::vector blocksizes = { 3, 1, 2 }; ADB::V va(3); va << 0.2, 1.2, 13.4; ADB::V vx(3); vx << 1.0, 2.2, 3.4; enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 }; ADB a = ADB::constant(va, blocksizes); ADB x = ADB::variable(FirstVar, vx, blocksizes); ADB xpx = x + x; BOOST_CHECK_EQUAL(xpx.value().cwiseNotEqual(2 * x.value()).count(), 0); const std::vector& J1x = x .derivative(); const std::vector& J2x = xpx.derivative(); BOOST_CHECK_EQUAL(J1x.size(), J2x.size()); for (std::vector::const_iterator j1b = J1x.begin(), j1e = J1x.end(), j2b = J2x.begin(); j1b != j1e; ++j1b, ++j2b) { BOOST_CHECK(*j2b == ADB::M((*j1b) * 2)); } } #if 0 #include int main() { typedef AutoDiff::ForwardBlock ADB; std::vector blocksizes = { 3, 1, 2 }; int num_blocks = blocksizes.size(); ADB::V v1(3); v1 << 0.2, 1.2, 13.4; ADB::V v2(3); v2 << 1.0, 2.2, 3.4; enum { FirstVar = 0, SecondVar = 1, ThirdVar = 2 }; ADB a = ADB::constant(v1, blocksizes); ADB x = ADB::variable(FirstVar, v2, blocksizes); std::vector jacs(num_blocks); for (int i = 0; i < num_blocks; ++i) { jacs[i] = ADB::M(blocksizes[FirstVar], blocksizes[i]); jacs[i].insert(0,0) = -1.0; } ADB f = ADB::function(v2, jacs); ADB xpx = x + x; std::cout << xpx; ADB xpxpa = x + x + a; std::cout << xpxpa; std::cout << xpxpa - xpx; ADB sqx = x * x; std::cout << sqx; ADB sqxdx = sqx / x; std::cout << sqxdx; ADB::M m(2,3); m.insert(0,0) = 4; m.insert(0,1) = 3; m.insert(1,1) = 1; std::cout << m*sqx; } #endif