/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template MultisegmentWellGeneric:: MultisegmentWellGeneric(WellInterfaceGeneric& baseif) : baseif_(baseif) { } template void MultisegmentWellGeneric:: scaleSegmentRatesWithWellRates(const std::vector>& segment_inlets, const std::vector>& segment_perforations, WellState& well_state) const { auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; auto& segment_rates = segments.rates; for (int phase = 0; phase < baseif_.numPhases(); ++phase) { const double unscaled_top_seg_rate = segment_rates[phase]; const double well_phase_rate = ws.surface_rates[phase]; if (std::abs(unscaled_top_seg_rate) > 1e-12) { for (int seg = 0; seg < numberOfSegments(); ++seg) { segment_rates[baseif_.numPhases() * seg + phase] *= well_phase_rate / unscaled_top_seg_rate; } } else { // Due to various reasons, the well/top segment rate can be zero for this phase. // We can not scale this rate directly. The following approach is used to initialize the segment rates. double sumTw = 0; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { sumTw += baseif_.wellIndex()[perf]; } // only handling this specific phase constexpr double num_single_phase = 1; std::vector perforation_rates(num_single_phase * baseif_.numPerfs(), 0.0); const double perf_phaserate_scaled = ws.surface_rates[phase] / sumTw; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { perforation_rates[perf] = baseif_.wellIndex()[perf] * perf_phaserate_scaled; } std::vector rates; WellState::calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, num_single_phase, 0, rates); for (int seg = 0; seg < numberOfSegments(); ++seg) { segment_rates[baseif_.numPhases() * seg + phase] = rates[seg]; } } } } template void MultisegmentWellGeneric:: scaleSegmentPressuresWithBhp(WellState& well_state) const { auto& ws = well_state.well(baseif_.indexOfWell()); auto& segments = ws.segments; segments.scale_pressure(ws.bhp); } template const WellSegments& MultisegmentWellGeneric:: segmentSet() const { return baseif_.wellEcl().getSegments(); } template int MultisegmentWellGeneric:: numberOfSegments() const { return segmentSet().size(); } template WellSegments::CompPressureDrop MultisegmentWellGeneric:: compPressureDrop() const { return segmentSet().compPressureDrop(); } template int MultisegmentWellGeneric:: segmentNumberToIndex(const int segment_number) const { return segmentSet().segmentNumberToIndex(segment_number); } template void MultisegmentWellGeneric:: detectOscillations(const std::vector& measure_history, const int it, bool& oscillate, bool& stagnate) const { if ( it < 2 ) { oscillate = false; stagnate = false; return; } stagnate = true; const double F0 = measure_history[it]; const double F1 = measure_history[it - 1]; const double F2 = measure_history[it - 2]; const double d1 = std::abs((F0 - F2) / F0); const double d2 = std::abs((F0 - F1) / F0); const double oscillaton_rel_tol = 0.2; oscillate = (d1 < oscillaton_rel_tol) && (oscillaton_rel_tol < d2); const double stagnation_rel_tol = 1.e-2; stagnate = std::abs((F1 - F2) / F2) <= stagnation_rel_tol; } template bool MultisegmentWellGeneric:: frictionalPressureLossConsidered() const { // HF- and HFA needs to consider frictional pressure loss return (segmentSet().compPressureDrop() != WellSegments::CompPressureDrop::H__); } template bool MultisegmentWellGeneric:: accelerationalPressureLossConsidered() const { return (segmentSet().compPressureDrop() == WellSegments::CompPressureDrop::HFA); } template double MultisegmentWellGeneric::getSegmentDp(const int seg, const double density, const std::vector& seg_dp) const { const double segment_depth = this->segmentSet()[seg].depth(); const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment()); const double segment_depth_outlet = seg == 0 ? baseif_.refDepth() : this->segmentSet()[outlet_segment_index].depth(); double dp = wellhelpers::computeHydrostaticCorrection(segment_depth_outlet, segment_depth, density, baseif_.gravity()); // we add the hydrostatic correction from the outlet segment // in order to get the correction all the way to the bhp ref depth. if (seg > 0) { dp += seg_dp[outlet_segment_index]; } return dp; } template class MultisegmentWellGeneric; } // namespace Opm