/* Copyright 2015 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include namespace Opm{ RelpermDiagnostics::RelpermDiagnostics(std::string& logFile) { streamLog_ = std::make_shared(logFile, Opm::Log::DefaultMessageTypes); } void RelpermDiagnostics::diagnosis(Opm::EclipseStateConstPtr eclState, Opm::DeckConstPtr deck, const UnstructuredGrid& grid) { std::cout << "***************Relperm Diagnostics***************\n"; phaseCheck_(deck); satFamilyCheck_(eclState); tableCheck_(eclState, deck); unscaledEndPointsCheck_(deck, eclState); scaledEndPointsCheck_(deck, eclState, grid); if (!messages_.empty()) { std::sort(messages_.begin(), messages_.end()); auto it = std::unique(messages_.begin(), messages_.end()); messages_.erase(it, messages_.end()); int counter = 1; std::cout << "***************\nProblem found:\n"; for (const auto& x : messages_) { std::cout << counter << ". " << x << std::endl; counter++; } } else { std::cout << "****************\nConsistency check all passed!" << std::endl; } std::cout << "********************************************************\n"; } std::shared_ptr RelpermDiagnostics::getOpmLog() const { return streamLog_; } std::vector RelpermDiagnostics::getMessages() const { return messages_; } void RelpermDiagnostics::phaseCheck_(DeckConstPtr deck) { bool hasWater = deck->hasKeyword("WATER"); bool hasGas = deck->hasKeyword("GAS"); bool hasOil = deck->hasKeyword("OIL"); if (hasWater && hasGas && !hasOil) { std::string msg = "System: Water-Gas system."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); fluidSystem_ = FluidSystem::WaterGas; } if (hasWater && hasOil && !hasGas) { std::string msg = "System: Oil-Water system."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); fluidSystem_ = FluidSystem::OilWater; } if (hasOil && hasGas && !hasWater) { std::string msg = "System: Oil-Gas system."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); fluidSystem_ = FluidSystem::OilGas; } if (hasOil && hasWater && hasGas) { std::string msg = "System: Black-oil system."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); fluidSystem_ = FluidSystem::BlackOil; } } void RelpermDiagnostics::satFamilyCheck_(Opm::EclipseStateConstPtr eclState) { const auto& tableManager = eclState->getTableManager(); const TableContainer& swofTables = tableManager->getSwofTables(); const TableContainer& slgofTables= tableManager->getSlgofTables(); const TableContainer& sgofTables = tableManager->getSgofTables(); const TableContainer& swfnTables = tableManager->getSwfnTables(); const TableContainer& sgfnTables = tableManager->getSgfnTables(); const TableContainer& sof3Tables = tableManager->getSof3Tables(); const TableContainer& sof2Tables = tableManager->getSof2Tables(); const TableContainer& sgwfnTables= tableManager->getSgwfnTables(); bool family1 = (!sgofTables.empty() || !slgofTables.empty()) && !swofTables.empty(); bool family2 = !swfnTables.empty() && !sgfnTables.empty() && (!sof3Tables.empty() || !sof2Tables.empty()) && !sgwfnTables.empty(); if (family1 && family2) { std::string msg = "Saturation families should not be mixed.\n Use either SGOF and SWOF or SGFN, SWFN and SOF3."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (!family1 && !family2) { std::string msg = "Saturations function must be specified using either \n \ family 1 or family 2 keywords \n \ Use either SGOF and SWOF or SGFN, SWFN and SOF3."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (family1 && !family2) { satFamily_ = SaturationFunctionFamily::FamilyI; std::string msg = "relperm: Saturation Family I."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); } if (!family1 && family2) { satFamily_ = SaturationFunctionFamily::FamilyII; std::string msg = "relperm: Saturation Family II."; std::cout << msg << std::endl; streamLog_->addMessage(Log::MessageType::Info, msg); } } void RelpermDiagnostics::tableCheck_(EclipseStateConstPtr eclState, DeckConstPtr deck) { int numSatRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTSFUN")->getInt(0); const auto& tableManager = eclState->getTableManager(); const TableContainer& swofTables = tableManager->getSwofTables(); const TableContainer& slgofTables= tableManager->getSlgofTables(); const TableContainer& sgofTables = tableManager->getSgofTables(); const TableContainer& swfnTables = tableManager->getSwfnTables(); const TableContainer& sgfnTables = tableManager->getSgfnTables(); const TableContainer& sof3Tables = tableManager->getSof3Tables(); const TableContainer& sof2Tables = tableManager->getSof2Tables(); const TableContainer& sgwfnTables= tableManager->getSgwfnTables(); for (int satnumIdx = 0; satnumIdx < numSatRegions; ++satnumIdx) { if (deck->hasKeyword("SWOF")) { swofTableCheck_(swofTables.getTable(satnumIdx)); } if (deck->hasKeyword("SGOF")) { sgofTableCheck_(sgofTables.getTable(satnumIdx)); } if (deck->hasKeyword("SLGOF")) { slgofTableCheck_(slgofTables.getTable(satnumIdx)); } if (deck->hasKeyword("SWFN")) { swfnTableCheck_(swfnTables.getTable(satnumIdx)); } if (deck->hasKeyword("SGFN")) { sgfnTableCheck_(sgfnTables.getTable(satnumIdx)); } if (deck->hasKeyword("SOF3")) { sof3TableCheck_(sof3Tables.getTable(satnumIdx)); } if (deck->hasKeyword("SOF2")) { sof2TableCheck_(sof2Tables.getTable(satnumIdx)); } if (deck->hasKeyword("SGWFN")) { sgwfnTableCheck_(sgwfnTables.getTable(satnumIdx)); } } } void RelpermDiagnostics::swofTableCheck_(const Opm::SwofTable& swofTables) { const auto& sw = swofTables.getSwColumn(); const auto& krw = swofTables.getKrwColumn(); const auto& krow = swofTables.getKrowColumn(); ///Check sw column. if (sw.front() < 0.0 || sw.back() > 1.0) { std::string msg = "Error: In SWOF table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///TODO check endpoint sw.back() == 1. - Sor. ///Check krw column. if (krw.front() != 0.0) { std::string msg = "Error: In SWOF table, first value of krw should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krw.front() < 0.0 || krw.back() > 1.0) { std::string msg = "Error: In SWOF table, krw should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krow column. if (krow.front() > 1.0 || krow.back() < 0.0) { std::string msg = "Error: In SWOF table, krow should be in range [0, 1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///TODO check if run with gas. } void RelpermDiagnostics::sgofTableCheck_(const Opm::SgofTable& sgofTables) { const auto& sg = sgofTables.getSgColumn(); const auto& krg = sgofTables.getKrgColumn(); const auto& krog = sgofTables.getKrogColumn(); ///Check sw column. if (sg.front() < 0.0 || sg.back() > 1.0) { std::string msg = "Error: In SGOF table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (sg.front() != 0.0) { std::string msg = "Error: In SGOF table, first value of sg should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///TODO check endpoint sw.back() == 1. - Sor. ///Check krw column. if (krg.front() != 0.0) { std::string msg = "Error: In SGOF table, first value of krg should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krg.front() < 0.0 || krg.back() > 1.0) { std::string msg = "Error: In SGOF table, krg should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krow column. if (krog.front() > 1.0 || krog.back() < 0.0) { std::string msg = "Error: In SGOF table, krog should be in range [0, 1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///TODO check if run with water. } void RelpermDiagnostics::slgofTableCheck_(const Opm::SlgofTable& slgofTables) { const auto& sl = slgofTables.getSlColumn(); const auto& krg = slgofTables.getKrgColumn(); const auto& krog = slgofTables.getKrogColumn(); ///Check sl column. ///TODO first value means sl = swco + sor if (sl.front() < 0.0 || sl.back() > 1.0) { std::string msg = "Error: In SLGOF table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (sl.back() != 1.0) { std::string msg = "Error: In SLGOF table, last value of sl should be 1."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krg.front() > 1.0 || krg.back() < 0) { std::string msg = "Error: In SLGOF table, krg shoule be in range [0, 1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krg.back() != 0.0) { std::string msg = "Error: In SLGOF table, last value of krg hould be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krog.front() < 0.0 || krog.back() > 1.0) { std::string msg = "Error: In SLGOF table, krog shoule be in range [0, 1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::swfnTableCheck_(const Opm::SwfnTable& swfnTables) { const auto& sw = swfnTables.getSwColumn(); const auto& krw = swfnTables.getKrwColumn(); ///Check sw column. if (sw.front() < 0.0 || sw.back() > 1.0) { std::string msg = "Error: In SWFN table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krw column. if (krw.front() < 0.0 || krw.back() > 1.0) { std::string msg = "Error: In SWFN table, krw should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krw.front() != 0.0) { std::string msg = "Error: In SWFN table, first value of krw should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::sgfnTableCheck_(const Opm::SgfnTable& sgfnTables) { const auto& sg = sgfnTables.getSgColumn(); const auto& krg = sgfnTables.getKrgColumn(); ///Check sg column. if (sg.front() < 0.0 || sg.back() > 1.0) { std::string msg = "Error: In SGFN table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krg column. if (krg.front() < 0.0 || krg.back() > 1.0) { std::string msg = "Error: In SGFN table, krg should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krg.front() != 0.0) { std::string msg = "Error: In SGFN table, first value of krg should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::sof3TableCheck_(const Opm::Sof3Table& sof3Tables) { const auto& so = sof3Tables.getSoColumn(); const auto& krow = sof3Tables.getKrowColumn(); const auto& krog = sof3Tables.getKrogColumn(); ///Check so column. ///TODO: The max so = 1 - Swco if (so.front() < 0.0 || so.back() > 1.0) { std::string msg = "Error: In SOF3 table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krow column. if (krow.front() < 0.0 || krow.back() > 1.0) { std::string msg = "Error: In SOF3 table, krow should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krow.front() != 0.0) { std::string msg = "Error: In SOF3 table, first value of krow should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krog column. if (krog.front() < 0.0 || krog.back() > 1.0) { std::string msg = "Error: In SOF3 table, krog should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krog.front() != 0.0) { std::string msg = "Error: In SOF3 table, first value of krog should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krog.back() != krow.back()) { std::string msg = "Error: In SOF3 table, max value of krog and krow should be the same."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::sof2TableCheck_(const Opm::Sof2Table& sof2Tables) { const auto& so = sof2Tables.getSoColumn(); const auto& kro = sof2Tables.getKroColumn(); ///Check so column. ///TODO: The max so = 1 - Swco if (so.front() < 0.0 || so.back() > 1.0) { std::string msg = "Error: In SOF2 table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krow column. if (kro.front() < 0.0 || kro.back() > 1.0) { std::string msg = "Error: In SOF2 table, krow should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (kro.front() != 0.0) { std::string msg = "Error: In SOF2 table, first value of krow should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::sgwfnTableCheck_(const Opm::SgwfnTable& sgwfnTables) { const auto& sg = sgwfnTables.getSgColumn(); const auto& krg = sgwfnTables.getKrgColumn(); const auto& krgw = sgwfnTables.getKrgwColumn(); ///Check sg column. if (sg.front() < 0.0 || sg.back() > 1.0) { std::string msg = "Error: In SGWFN table, saturation should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krg column. if (krg.front() < 0.0 || krg.back() > 1.0) { std::string msg = "Error: In SGWFN table, krg should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krg.front() != 0.0) { std::string msg = "Error: In SGWFN table, first value of krg should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } ///Check krgw column. ///TODO check saturation sw = 1. - sg if (krgw.front() > 1.0 || krgw.back() < 0.0) { std::string msg = "Error: In SGWFN table, krgw should be in range [0,1]."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } if (krgw.back() != 0.0) { std::string msg = "Error: In SGWFN table, last value of krgw should be 0."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Error, msg); } } void RelpermDiagnostics::unscaledEndPointsCheck_(DeckConstPtr deck, EclipseStateConstPtr eclState) { // get the number of saturation regions and the number of cells in the deck int numSatRegions = deck->getKeyword("TABDIMS")->getRecord(0)->getItem("NTSFUN")->getInt(0); unscaledEpsInfo_.resize(numSatRegions); auto tables = eclState->getTableManager(); const TableContainer& swofTables = tables->getSwofTables(); const TableContainer& sgofTables = tables->getSgofTables(); const TableContainer& slgofTables = tables->getSlgofTables(); const TableContainer& sof3Tables = tables->getSof3Tables(); for (int satnumIdx = 0; satnumIdx < numSatRegions; ++satnumIdx) { unscaledEpsInfo_[satnumIdx].extractUnscaled(deck, eclState, satnumIdx); std::cout << "***************\nEnd-Points In all the Tables\n"; unscaledEpsInfo_[satnumIdx].print(); ///Consistency check. if (unscaledEpsInfo_[satnumIdx].Sgu > (1. - unscaledEpsInfo_[satnumIdx].Swl)) { std::string msg = "Warning: Sgmax should not exceed 1-Swco."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if (unscaledEpsInfo_[satnumIdx].Sgl > (1. - unscaledEpsInfo_[satnumIdx].Swu)) { std::string msg = "Warning: Sgco should not exceed 1-Swmax."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } ///Krow(Sou) == Krog(Sou) for three-phase /// means Krow(Swco) == Krog(Sgco) double krow_value = 1e20; double krog_value = 1e-20; if (fluidSystem_ == FluidSystem::BlackOil) { if (satFamily_ == SaturationFunctionFamily::FamilyI) { if (!sgofTables.empty()) { auto sg = sgofTables.getTable(satnumIdx).getSgColumn(); auto krog = sgofTables.getTable(satnumIdx).getKrogColumn(); krog_value=Opm::linearInterpolation(sg, krog,unscaledEpsInfo_[satnumIdx].Sgl); } else { assert(!slgofTables.empty()); auto sl = slgofTables.getTable(satnumIdx).getSlColumn(); auto krog = slgofTables.getTable(satnumIdx).getKrogColumn(); krog_value=Opm::linearInterpolation(sl, krog, unscaledEpsInfo_[satnumIdx].Sgl); } auto sw = swofTables.getTable(satnumIdx).getSwColumn(); auto krow = swofTables.getTable(satnumIdx).getKrowColumn(); krow_value = Opm::linearInterpolation(sw, krow,unscaledEpsInfo_[satnumIdx].Swl); } if (satFamily_ == SaturationFunctionFamily::FamilyII) { assert(!sof3Tables.empty()); const double Sou = 1.- unscaledEpsInfo_[satnumIdx].Swl - unscaledEpsInfo_[satnumIdx].Sgl; auto so = sof3Tables.getTable(satnumIdx).getSoColumn(); auto krow = sof3Tables.getTable(satnumIdx).getKrowColumn(); auto krog = sof3Tables.getTable(satnumIdx).getKrogColumn(); krow_value = Opm::linearInterpolation(so, krow, Sou); krog_value = Opm::linearInterpolation(so, krog, Sou); } if (krow_value != krog_value) { std::string msg = "Warning: Krow(sSomax) should equal Krog(Somax)."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } ///Krw(Sw=0)=Krg(Sg=0)=Krow(So=0)=Krog(So=0)=0. ///Mobile fluid requirements if (((unscaledEpsInfo_[satnumIdx].Sowcr + unscaledEpsInfo_[satnumIdx].Swcr)-1) >= 0) { std::string msg = "Warning: Sowcr + Swcr should less than 1."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if (((unscaledEpsInfo_[satnumIdx].Sogcr + unscaledEpsInfo_[satnumIdx].Sgcr + unscaledEpsInfo_[satnumIdx].Swl) - 1 ) > 0) { std::string msg = "Warning: Sogcr + Sgcr + Swco should less than 1."; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } } void RelpermDiagnostics::scaledEndPointsCheck_(DeckConstPtr deck, EclipseStateConstPtr eclState, const UnstructuredGrid& grid) { const int nc = Opm::UgGridHelpers::numCells(grid); std::vector compressedToCartesianIdx(nc); const auto& global_cell = Opm::UgGridHelpers::globalCell(grid); for (int cell = 0; cell < nc; ++cell) { if (global_cell) { compressedToCartesianIdx[cell] = global_cell[cell]; } else { compressedToCartesianIdx[cell] = cell; } } scaledEpsInfo_.resize(nc); EclEpsGridProperties epsGridProperties; epsGridProperties.initFromDeck(deck, eclState, /*imbibition=*/false); for (int c = 0; c < nc; ++c) { int cartIdx = compressedToCartesianIdx[c]; scaledEpsInfo_[c].extractScaled(epsGridProperties, cartIdx); // SGU <= 1.0 - SWL if (scaledEpsInfo_[c].Sgu > (1.0 - scaledEpsInfo_[c].Swl)) { std::string msg = "Warning: For scaled endpoints input, SGU exceed 1.0 - SWL"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } // SGL <= 1.0 - SWU if (scaledEpsInfo_[c].Sgl > (1.0 - scaledEpsInfo_[c].Swu)) { std::string msg = "Warning: For scaled endpoints input, SGL exceed 1.0 - SWU"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if (deck->hasKeyword("SCALECRS") && fluidSystem_ == FluidSystem::BlackOil) { // Mobilility check. if ((scaledEpsInfo_[c].Sowcr + scaledEpsInfo_[c].Swcr) >= 1.0) { std::string msg = "Warning: For scaled endpoints input, SOWCR + SWCR exceed 1.0"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if ((scaledEpsInfo_[c].Sogcr + scaledEpsInfo_[c].Sgcr + scaledEpsInfo_[c].Swl) >= 1.0) { std::string msg = "Warning: For scaled endpoints input, SOGCR + SGCR + SWL exceed 1.0"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } ///Following rules come from NEXUS. if (fluidSystem_ != FluidSystem::WaterGas) { if (scaledEpsInfo_[c].Swl > scaledEpsInfo_[c].Swcr) { std::string msg = "Warning: For scaled endpoints input, SWL > SWCR"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if (scaledEpsInfo_[c].Swcr > scaledEpsInfo_[c].Sowcr) { std::string msg = "Warning: For scaled endpoints input, SWCR > SOWCR"; messages_.push_back(msg); streamLog_->addMessage(Opm::Log::MessageType::Warning, msg); } if (scaledEpsInfo_[c].Sowcr > scaledEpsInfo_[c].Swu) { std::string msg = "Warning: For scaled endpoints input, SOWCR > SWU"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } if (fluidSystem_ != FluidSystem::OilWater) { if (scaledEpsInfo_[c].Sgl > scaledEpsInfo_[c].Sgcr) { std::string msg = "Warning: For scaled endpoints input, SGL > SGCR"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } if (fluidSystem_ != FluidSystem::BlackOil) { if (scaledEpsInfo_[c].Sgcr > scaledEpsInfo_[c].Sogcr) { std::string msg = "Warning: For scaled endpoints input, SGCR > SOGCR"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } if (scaledEpsInfo_[c].Sogcr > scaledEpsInfo_[c].Sgu) { std::string msg = "Warning: For scaled endpoints input, SOGCR > SGU"; messages_.push_back(msg); streamLog_->addMessage(Log::MessageType::Warning, msg); } } } } } //namespace Opm