/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Andreas Lauser This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED #define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED //#include //#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { class SimulatorFullyImplicitBlackoilEbos; //class StandardWellsDense; /// a simulator for the blackoil model class SimulatorFullyImplicitBlackoilEbos { public: typedef typename TTAG(EclFlowProblem) TypeTag; typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef WellStateFullyImplicitBlackoilDense WellState; typedef BlackoilState ReservoirState; typedef BlackoilOutputWriter OutputWriter; typedef BlackoilModelEbos Model; typedef BlackoilModelParameters ModelParameters; typedef NonlinearSolver Solver; typedef StandardWellsDense WellModel; /// Initialise from parameters and objects to observe. /// \param[in] param parameters, this class accepts the following: /// parameter (default) effect /// ----------------------------------------------------------- /// output (true) write output to files? /// output_dir ("output") output directoty /// output_interval (1) output every nth step /// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal) /// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal) /// nl_pressure_maxiter (10) max nonlinear iterations in pressure /// nl_maxiter (30) max nonlinear iterations in transport /// nl_tolerance (1e-9) transport solver absolute residual tolerance /// num_transport_substeps (1) number of transport steps per pressure step /// use_segregation_split (false) solve for gravity segregation (if false, /// segregation is ignored). /// /// \param[in] geo derived geological properties /// \param[in] props fluid and rock properties /// \param[in] linsolver linear solver /// \param[in] has_disgas true for dissolved gas option /// \param[in] has_vapoil true for vaporized oil option /// \param[in] eclipse_state the object which represents an internalized ECL deck /// \param[in] output_writer /// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator, const parameter::ParameterGroup& param, DerivedGeology& geo, BlackoilPropsAdFromDeck& props, NewtonIterationBlackoilInterface& linsolver, const bool has_disgas, const bool has_vapoil, const EclipseState& /* eclState */, OutputWriter& output_writer, const std::unordered_set& defunct_well_names) : ebosSimulator_(ebosSimulator), param_(param), model_param_(param), solver_param_(param), props_(props), geo_(geo), solver_(linsolver), has_disgas_(has_disgas), has_vapoil_(has_vapoil), terminal_output_(param.getDefault("output_terminal", true)), output_writer_(output_writer), defunct_well_names_( defunct_well_names ), is_parallel_run_( false ) { extractLegacyCellPvtRegionIndex_(); rateConverter_.reset(new RateConverterType(props.phaseUsage(), legacyCellPvtRegionIdx_.data(), AutoDiffGrid::numCells(grid()), std::vector(AutoDiffGrid::numCells(grid()), 0))); #if HAVE_MPI if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = boost::any_cast(solver_.parallelInformation()); // Only rank 0 does print to std::cout terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 ); is_parallel_run_ = ( info.communicator().size() > 1 ); } #endif } /// Run the simulation. /// This will run succesive timesteps until timer.done() is true. It will /// modify the reservoir and well states. /// \param[in,out] timer governs the requested reporting timesteps /// \param[in,out] state state of reservoir: pressure, fluxes /// \return simulation report, with timing data SimulatorReport run(SimulatorTimer& timer, ReservoirState& state) { WellState prev_well_state; ExtraData extra; if (output_writer_.isRestart()) { // This is a restart, populate WellState and ReservoirState state objects from restart file output_writer_.initFromRestartFile(props_.phaseUsage(), grid(), state, prev_well_state, extra); initHydroCarbonState(state, props_.phaseUsage(), Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_); { const int num_cells = Opm::UgGridHelpers::numCells(grid()); typedef std::vector VectorType; const VectorType& somax = state.getCellData( "SOMAX" ); for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) { ebosSimulator_.model().setMaxOilSaturation(somax[cellIdx], cellIdx); } } } // Create timers and file for writing timing info. Opm::time::StopWatch solver_timer; Opm::time::StopWatch step_timer; Opm::time::StopWatch total_timer; total_timer.start(); std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt"; std::ofstream tstep_os(tstep_filename.c_str()); const auto& schedule = eclState().getSchedule(); // adaptive time stepping const auto& events = schedule.getEvents(); std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping; if( param_.getDefault("timestep.adaptive", true ) ) { if (param_.getDefault("use_TUNING", false)) { adaptiveTimeStepping.reset( new AdaptiveTimeStepping( schedule.getTuning(), timer.currentStepNum(), param_, terminal_output_ ) ); } else { adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) ); } if (output_writer_.isRestart()) { if (extra.suggested_step > 0.0) { adaptiveTimeStepping->setSuggestedNextStep(extra.suggested_step); } } } std::string restorefilename = param_.getDefault("restorefile", std::string("") ); if( ! restorefilename.empty() ) { // -1 means that we'll take the last report step that was written const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) ); output_writer_.restore( timer, state, prev_well_state, restorefilename, desiredRestoreStep ); } bool is_well_potentials_computed = param_.getDefault("compute_well_potentials", false ); std::vector well_potentials; DynamicListEconLimited dynamic_list_econ_limited; SimulatorReport report; SimulatorReport stepReport; std::vector fipnum_global = eclState().get3DProperties().getIntGridProperty("FIPNUM").getData(); //Get compressed cell fipnum. std::vector fipnum(Opm::UgGridHelpers::numCells(grid())); if (fipnum_global.empty()) { std::fill(fipnum.begin(), fipnum.end(), 0); } else { for (size_t c = 0; c < fipnum.size(); ++c) { fipnum[c] = fipnum_global[Opm::UgGridHelpers::globalCell(grid())[c]]; } } std::vector> originalFluidInPlace; std::vector originalFluidInPlaceTotals; // Main simulation loop. while (!timer.done()) { // Report timestep. step_timer.start(); if ( terminal_output_ ) { std::ostringstream ss; timer.report(ss); OpmLog::note(ss.str()); } // Create wells and well state. WellsManager wells_manager(eclState(), timer.currentStepNum(), Opm::UgGridHelpers::numCells(grid()), Opm::UgGridHelpers::globalCell(grid()), Opm::UgGridHelpers::cartDims(grid()), Opm::UgGridHelpers::dimensions(grid()), Opm::UgGridHelpers::cell2Faces(grid()), Opm::UgGridHelpers::beginFaceCentroids(grid()), dynamic_list_econ_limited, is_parallel_run_, well_potentials, defunct_well_names_ ); const Wells* wells = wells_manager.c_wells(); WellState well_state; well_state.init(wells, state, prev_well_state, props_.phaseUsage()); // give the polymer and surfactant simulators the chance to do their stuff handleAdditionalWellInflow(timer, wells_manager, well_state, wells); // Compute reservoir volumes for RESV controls. computeRESV(timer.currentStepNum(), wells, state, well_state); // Run a multiple steps of the solver depending on the time step control. solver_timer.start(); const WellModel well_model(wells, &(wells_manager.wellCollection()), model_param_, terminal_output_); auto solver = createSolver(well_model); std::vector> currentFluidInPlace; std::vector currentFluidInPlaceTotals; // Compute orignal fluid in place if this has not been done yet if (originalFluidInPlace.empty()) { solver->model().convertInput(/*iterationIdx=*/0, state, ebosSimulator_ ); ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0); originalFluidInPlace = solver->computeFluidInPlace(fipnum); originalFluidInPlaceTotals = FIPTotals(originalFluidInPlace, state); FIPUnitConvert(eclState().getUnits(), originalFluidInPlace); FIPUnitConvert(eclState().getUnits(), originalFluidInPlaceTotals); currentFluidInPlace = originalFluidInPlace; currentFluidInPlaceTotals = originalFluidInPlaceTotals; } // write the inital state at the report stage if (timer.initialStep()) { Dune::Timer perfTimer; perfTimer.start(); if (terminal_output_) { outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0); for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) { outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1); } } // No per cell data is written for initial step, but will be // for subsequent steps, when we have started simulating output_writer_.writeTimeStep( timer, state, well_state, solver->model() ); report.output_write_time += perfTimer.stop(); } if( terminal_output_ ) { std::ostringstream step_msg; boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y"); step_msg.imbue(std::locale(std::locale::classic(), facet)); step_msg << "\nTime step " << std::setw(4) <wellIterations() != 0) { iter_msg << " days well iterations = " << solver->wellIterations() << ", "; } iter_msg << "non-linear iterations = " << solver->nonlinearIterations() << ", total linear iterations = " << solver->linearIterations() << "\n"; OpmLog::info(iter_msg.str()); } } solver->model().endReportStep(); // take time that was used to solve system for this reportStep solver_timer.stop(); // update timing. report.solver_time += solver_timer.secsSinceStart(); if ( output_writer_.output() ) { if ( output_writer_.isIORank() ) { stepReport.reportParam(tstep_os); } } // Increment timer, remember well state. ++timer; // Compute current fluid in place. currentFluidInPlace = solver->computeFluidInPlace(fipnum); currentFluidInPlaceTotals = FIPTotals(currentFluidInPlace, state); const std::string version = moduleVersionName(); FIPUnitConvert(eclState().getUnits(), currentFluidInPlace); FIPUnitConvert(eclState().getUnits(), currentFluidInPlaceTotals); if (terminal_output_ ) { outputTimestampFIP(timer, version); outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0); for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) { outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1); } std::string msg; msg = "Time step took " + std::to_string(solver_timer.secsSinceStart()) + " seconds; " "total solver time " + std::to_string(report.solver_time) + " seconds."; OpmLog::note(msg); } // write simulation state at the report stage Dune::Timer perfTimer; perfTimer.start(); const double nextstep = adaptiveTimeStepping ? adaptiveTimeStepping->suggestedNextStep() : -1.0; output_writer_.writeTimeStep( timer, state, well_state, solver->model(), false, nextstep ); report.output_write_time += perfTimer.stop(); prev_well_state = well_state; // The well potentials are only computed if they are needed // For now thay are only used to determine default guide rates for group controlled wells if ( is_well_potentials_computed ) { computeWellPotentials(wells, well_state, well_potentials); } updateListEconLimited(solver, eclState().getSchedule(), timer.currentStepNum(), wells, well_state, dynamic_list_econ_limited); } // Stop timer and create timing report total_timer.stop(); report.total_time = total_timer.secsSinceStart(); report.converged = true; return report; } const Grid& grid() const { return ebosSimulator_.gridManager().grid(); } protected: void handleAdditionalWellInflow(SimulatorTimer& /* timer */, WellsManager& /* wells_manager */, WellState& /* well_state */, const Wells* /* wells */) { } std::unique_ptr createSolver(const WellModel& well_model) { auto model = std::unique_ptr(new Model(ebosSimulator_, model_param_, props_, geo_, well_model, solver_, terminal_output_)); return std::unique_ptr(new Solver(solver_param_, std::move(model))); } void computeRESV(const std::size_t step, const Wells* wells, const BlackoilState& x, WellState& xw) { typedef SimFIBODetails::WellMap WellMap; const auto w_ecl = eclState().getSchedule().getWells(step); const WellMap& wmap = SimFIBODetails::mapWells(w_ecl); const std::vector& resv_wells = SimFIBODetails::resvWells(wells, step, wmap); const std::size_t number_resv_wells = resv_wells.size(); std::size_t global_number_resv_wells = number_resv_wells; #if HAVE_MPI if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) ) { const auto& info = boost::any_cast(solver_.parallelInformation()); global_number_resv_wells = info.communicator().sum(global_number_resv_wells); if ( global_number_resv_wells ) { // At least one process has resv wells. Therefore rate converter needs // to calculate averages over regions that might cross process // borders. This needs to be done by all processes and therefore // outside of the next if statement. rateConverter_->defineState(x, boost::any_cast(solver_.parallelInformation())); } } else #endif { if ( global_number_resv_wells ) { rateConverter_->defineState(x); } } if (! resv_wells.empty()) { const PhaseUsage& pu = props_.phaseUsage(); const std::vector::size_type np = props_.numPhases(); std::vector distr (np); std::vector hrates(np); std::vector prates(np); for (std::vector::const_iterator rp = resv_wells.begin(), e = resv_wells.end(); rp != e; ++rp) { WellControls* ctrl = wells->ctrls[*rp]; const bool is_producer = wells->type[*rp] == PRODUCER; // RESV control mode, all wells { const int rctrl = SimFIBODetails::resv_control(ctrl); if (0 <= rctrl) { const std::vector::size_type off = (*rp) * np; if (is_producer) { // Convert to positive rates to avoid issues // in coefficient calculations. std::transform(xw.wellRates().begin() + (off + 0*np), xw.wellRates().begin() + (off + 1*np), prates.begin(), std::negate()); } else { std::copy(xw.wellRates().begin() + (off + 0*np), xw.wellRates().begin() + (off + 1*np), prates.begin()); } const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_->calcCoeff(prates, fipreg, distr); well_controls_iset_distr(ctrl, rctrl, & distr[0]); } } // RESV control, WCONHIST wells. A bit of duplicate // work, regrettably. if (is_producer && wells->name[*rp] != 0) { WellMap::const_iterator i = wmap.find(wells->name[*rp]); if (i != wmap.end()) { const auto* wp = i->second; const WellProductionProperties& p = wp->getProductionProperties(step); if (! p.predictionMode) { // History matching (WCONHIST/RESV) SimFIBODetails::historyRates(pu, p, hrates); const int fipreg = 0; // Hack. Ignore FIP regions. rateConverter_->calcCoeff(hrates, fipreg, distr); // WCONHIST/RESV target is sum of all // observed phase rates translated to // reservoir conditions. Recall sign // convention: Negative for producers. const double target = - std::inner_product(distr.begin(), distr.end(), hrates.begin(), 0.0); well_controls_clear(ctrl); well_controls_assert_number_of_phases(ctrl, int(np)); static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); const int ok_resv = well_controls_add_new(RESERVOIR_RATE, target, invalid_alq, invalid_vfp, & distr[0], ctrl); // For WCONHIST the BHP limit is set to 1 atm. // or a value specified using WELTARG double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (ok_resv != 0 && ok_bhp != 0) { xw.currentControls()[*rp] = 0; well_controls_set_current(ctrl, 0); } } } } } } if( wells ) { for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) { WellControls* ctrl = wells->ctrls[w]; const bool is_producer = wells->type[w] == PRODUCER; if (!is_producer && wells->name[w] != 0) { WellMap::const_iterator i = wmap.find(wells->name[w]); if (i != wmap.end()) { const auto* wp = i->second; const WellInjectionProperties& injector = wp->getInjectionProperties(step); if (!injector.predictionMode) { //History matching WCONINJEH static const double invalid_alq = -std::numeric_limits::max(); static const int invalid_vfp = -std::numeric_limits::max(); // For WCONINJEH the BHP limit is set to a large number // or a value specified using WELTARG double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits::max(); const int ok_bhp = well_controls_add_new(BHP, bhp_limit, invalid_alq, invalid_vfp, NULL, ctrl); if (!ok_bhp) { OPM_THROW(std::runtime_error, "Failed to add well control."); } } } } } } } void computeWellPotentials(const Wells* wells, const WellState& xw, std::vector& well_potentials) { const int nw = wells->number_of_wells; const int np = wells->number_of_phases; well_potentials.clear(); well_potentials.resize(nw*np,0.0); for (int w = 0; w < nw; ++w) { for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) { for (int phase = 0; phase < np; ++phase) { well_potentials[w*np + phase] += xw.wellPotentials()[perf*np + phase]; } } } } void updateListEconLimited(const std::unique_ptr& solver, const Schedule& schedule, const int current_step, const Wells* wells, const WellState& well_state, DynamicListEconLimited& list_econ_limited) const { solver->model().wellModel().updateListEconLimited(schedule, current_step, wells, well_state, list_econ_limited); } void FIPUnitConvert(const UnitSystem& units, std::vector>& fip) { for (size_t i = 0; i < fip.size(); ++i) { FIPUnitConvert(units, fip[i]); } } void FIPUnitConvert(const UnitSystem& units, std::vector& fip) { if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { fip[0] = unit::convert::to(fip[0], unit::stb); fip[1] = unit::convert::to(fip[1], unit::stb); fip[2] = unit::convert::to(fip[2], 1000*unit::cubic(unit::feet)); fip[3] = unit::convert::to(fip[3], 1000*unit::cubic(unit::feet)); fip[4] = unit::convert::to(fip[4], unit::stb); fip[5] = unit::convert::to(fip[5], unit::stb); fip[6] = unit::convert::to(fip[6], unit::psia); } else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { fip[6] = unit::convert::to(fip[6], unit::barsa); } else { OPM_THROW(std::runtime_error, "Unsupported unit type for fluid in place output."); } } std::vector FIPTotals(const std::vector>& fip, const ReservoirState& /* state */) { std::vector totals(7,0.0); for (int i = 0; i < 5; ++i) { for (size_t reg = 0; reg < fip.size(); ++reg) { totals[i] += fip[reg][i]; } } const auto& gridView = ebosSimulator_.gridManager().gridView(); const auto& comm = gridView.comm(); double pv_hydrocarbon_sum = 0.0; double p_pv_hydrocarbon_sum = 0.0; ElementContext elemCtx(ebosSimulator_); const auto& elemEndIt = gridView.template end(); for (auto elemIt = gridView.template begin(); elemIt != elemEndIt; ++elemIt) { const auto& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) { continue; } elemCtx.updatePrimaryStencil(elem); elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double p = fs.pressure(FluidSystem::oilPhaseIdx).value(); const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); // calculate the pore volume of the current cell. Note that the // porosity returned by the intensive quantities is defined as the // ratio of pore space to total cell volume and includes all pressure // dependent (-> rock compressibility) and static modifiers (MULTPV, // MULTREGP, NTG, PORV, MINPV and friends). Also note that because of // this, the porosity returned by the intensive quantities can be // outside of the physical range [0, 1] in pathetic cases. const double pv = ebosSimulator_.model().dofTotalVolume(cellIdx) * intQuants.porosity().value(); totals[5] += pv; pv_hydrocarbon_sum += pv*hydrocarbon; p_pv_hydrocarbon_sum += p*pv*hydrocarbon; } pv_hydrocarbon_sum = comm.sum(pv_hydrocarbon_sum); p_pv_hydrocarbon_sum = comm.sum(p_pv_hydrocarbon_sum); totals[5] = comm.sum(totals[5]); totals[6] = (p_pv_hydrocarbon_sum / pv_hydrocarbon_sum); return totals; } void outputTimestampFIP(SimulatorTimer& timer, const std::string version) { std::ostringstream ss; boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y"); ss.imbue(std::locale(std::locale::classic(), facet)); ss << "\n **************************************************************************\n" << " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days" << " *" << std::setw(30) << eclState().getTitle() << " *\n" << " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime() << " * Flow version " << std::setw(11) << version << " *\n" << " **************************************************************************\n"; OpmLog::note(ss.str()); } void outputFluidInPlace(const std::vector& oip, const std::vector& cip, const UnitSystem& units, const int reg) { std::ostringstream ss; if (!reg) { ss << " ===================================================\n" << " : Field Totals :\n"; } else { ss << " ===================================================\n" << " : FIPNUM report region " << std::setw(2) << reg << " :\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << " : PAV =" << std::setw(14) << cip[6] << " BARSA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[5] << " RM3 :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Porv volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n"; } if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << " : PAV =" << std::setw(14) << cip[6] << " PSIA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[5] << " RB :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Pore volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n"; } ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n" << ":Currently in place :" << std::setw(14) << cip[1] << std::setw(14) << cip[4] << std::setw(14) << (cip[1]+cip[4]) << ":" << std::setw(13) << cip[0] << " :" << std::setw(14) << (cip[2]) << std::setw(14) << cip[3] << std::setw(14) << (cip[2] + cip[3]) << ":\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:\n" << ":Originally in place :" << std::setw(14) << oip[1] << std::setw(14) << oip[4] << std::setw(14) << (oip[1]+oip[4]) << ":" << std::setw(13) << oip[0] << " :" << std::setw(14) << oip[2] << std::setw(14) << oip[3] << std::setw(14) << (oip[2] + oip[3]) << ":\n" << ":========================:==========================================:================:==========================================:\n"; OpmLog::note(ss.str()); } const EclipseState& eclState() const { return ebosSimulator_.gridManager().eclState(); } void extractLegacyCellPvtRegionIndex_() { const auto& grid = ebosSimulator_.gridManager().grid(); const auto& eclProblem = ebosSimulator_.problem(); const unsigned numCells = grid.size(/*codim=*/0); legacyCellPvtRegionIdx_.resize(numCells); for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) { legacyCellPvtRegionIdx_[cellIdx] = eclProblem.pvtRegionIndex(cellIdx); } } // Data. Simulator& ebosSimulator_; std::vector legacyCellPvtRegionIdx_; typedef RateConverter::SurfaceToReservoirVoidage > RateConverterType; typedef typename Solver::SolverParameters SolverParameters; const parameter::ParameterGroup param_; ModelParameters model_param_; SolverParameters solver_param_; // Observed objects. BlackoilPropsAdFromDeck& props_; // Solvers DerivedGeology& geo_; NewtonIterationBlackoilInterface& solver_; // Misc. data const bool has_disgas_; const bool has_vapoil_; bool terminal_output_; // output_writer OutputWriter& output_writer_; std::unique_ptr rateConverter_; // The names of wells that should be defunct // (e.g. in a parallel run when they are handeled by // a different process) std::unordered_set defunct_well_names_; // Whether this a parallel simulation or not bool is_parallel_run_; }; } // namespace Opm #endif // OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED