/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { BlackoilWellModelGeneric:: BlackoilWellModelGeneric(Schedule& schedule, const SummaryState& summaryState, const EclipseState& eclState, const PhaseUsage& phase_usage, const Parallel::Communication& comm) : schedule_(schedule) , summaryState_(summaryState) , eclState_(eclState) , comm_(comm) , phase_usage_(phase_usage) , wbpCalculationService_ { eclState.gridDims(), comm_ } , guideRate_(schedule) , active_wgstate_(phase_usage) , last_valid_wgstate_(phase_usage) , nupcol_wgstate_(phase_usage) { const auto numProcs = comm_.size(); this->not_on_process_ = [this, numProcs](const Well& well) { if (numProcs == decltype(numProcs){1}) return false; // Recall: false indicates NOT active! const auto value = std::make_pair(well.name(), true); auto candidate = std::lower_bound(this->parallel_well_info_.begin(), this->parallel_well_info_.end(), value); return (candidate == this->parallel_well_info_.end()) || (*candidate != value); }; } int BlackoilWellModelGeneric:: numLocalWells() const { return wells_ecl_.size(); } int BlackoilWellModelGeneric:: numPhases() const { return phase_usage_.num_phases; } bool BlackoilWellModelGeneric:: hasWell(const std::string& wname) const { return std::any_of(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&wname](const Well& well) { return well.name() == wname; }); } bool BlackoilWellModelGeneric:: wellsActive() const { return wells_active_; } bool BlackoilWellModelGeneric:: networkActive() const { return network_active_; } bool BlackoilWellModelGeneric:: anyMSWellOpenLocal() const { for (const auto& well : wells_ecl_) { if (well.isMultiSegment()) { return true; } } return false; } const Well& BlackoilWellModelGeneric:: getWellEcl(const std::string& well_name) const { // finding the iterator of the well in wells_ecl auto well_ecl = std::find_if(wells_ecl_.begin(), wells_ecl_.end(), [&well_name](const Well& elem)->bool { return elem.name() == well_name; }); assert(well_ecl != wells_ecl_.end()); return *well_ecl; } void BlackoilWellModelGeneric:: initFromRestartFile(const RestartValue& restartValues, WellTestState wtestState, const std::size_t numCells, bool handle_ms_well) { // The restart step value is used to identify wells present at the given // time step. Wells that are added at the same time step as RESTART is initiated // will not be present in a restart file. Use the previous time step to retrieve // wells that have information written to the restart file. const int report_step = std::max(eclState_.getInitConfig().getRestartStep() - 1, 0); const auto& config = this->schedule()[report_step].guide_rate(); // wells_ecl_ should only contain wells on this processor. wells_ecl_ = getLocalWells(report_step); this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_); this->initializeWellProdIndCalculators(); initializeWellPerfData(); if (! this->wells_ecl_.empty()) { handle_ms_well &= anyMSWellOpenLocal(); // Resize for restart step this->wellState().resize(this->wells_ecl_, this->local_parallel_well_info_, this->schedule(), handle_ms_well, numCells, this->well_perf_data_, this->summaryState_); BlackoilWellModelRestart(*this).loadRestartData(restartValues.wells, restartValues.grp_nwrk, handle_ms_well, this->wellState(), this->groupState()); if (config.has_model()) { BlackoilWellModelRestart(*this).loadRestartGuideRates(report_step, config.model().target(), restartValues.wells, this->guideRate_); } } if (config.has_model()) { BlackoilWellModelRestart(*this).loadRestartGuideRates(report_step, config, restartValues.grp_nwrk.groupData, this->guideRate_); this->guideRate_.updateGuideRateExpiration(this->schedule().seconds(report_step), report_step); } this->active_wgstate_.wtest_state(std::move(wtestState)); this->commitWGState(); initial_step_ = false; } void BlackoilWellModelGeneric:: prepareDeserialize(int report_step, const std::size_t numCells, bool handle_ms_well) { // wells_ecl_ should only contain wells on this processor. wells_ecl_ = getLocalWells(report_step); this->local_parallel_well_info_ = createLocalParallelWellInfo(wells_ecl_); this->initializeWellProdIndCalculators(); initializeWellPerfData(); if (! this->wells_ecl_.empty()) { handle_ms_well &= anyMSWellOpenLocal(); this->wellState().resize(this->wells_ecl_, this->local_parallel_well_info_, this->schedule(), handle_ms_well, numCells, this->well_perf_data_, this->summaryState_); } this->wellState().clearWellRates(); this->commitWGState(); this->updateNupcolWGState(); } std::vector BlackoilWellModelGeneric:: getLocalWells(const int timeStepIdx) const { auto w = schedule().getWells(timeStepIdx); w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end()); return w; } std::vector> BlackoilWellModelGeneric:: createLocalParallelWellInfo(const std::vector& wells) { std::vector> local_parallel_well_info; local_parallel_well_info.reserve(wells.size()); for (const auto& well : wells) { auto wellPair = std::make_pair(well.name(), true); auto pwell = std::lower_bound(parallel_well_info_.begin(), parallel_well_info_.end(), wellPair); assert(pwell != parallel_well_info_.end() && *pwell == wellPair); local_parallel_well_info.push_back(std::ref(*pwell)); } return local_parallel_well_info; } void BlackoilWellModelGeneric:: initializeWellProdIndCalculators() { this->prod_index_calc_.clear(); this->prod_index_calc_.reserve(this->wells_ecl_.size()); for (const auto& well : this->wells_ecl_) { this->prod_index_calc_.emplace_back(well); } } void BlackoilWellModelGeneric:: initializeWellPerfData() { well_perf_data_.resize(wells_ecl_.size()); this->conn_idx_map_.clear(); this->conn_idx_map_.reserve(wells_ecl_.size()); int well_index = 0; for (const auto& well : wells_ecl_) { int connection_index = 0; // INVALID_ECL_INDEX marks no above perf available int connection_index_above = ParallelWellInfo::INVALID_ECL_INDEX; well_perf_data_[well_index].clear(); well_perf_data_[well_index].reserve(well.getConnections().size()); auto& connIdxMap = this->conn_idx_map_ .emplace_back(well.getConnections().size()); CheckDistributedWellConnections checker { well, this->local_parallel_well_info_[well_index].get() }; bool hasFirstConnection = false; bool firstOpenConnection = true; auto& parallelWellInfo = this->local_parallel_well_info_[well_index].get(); parallelWellInfo.beginReset(); for (const auto& connection : well.getConnections()) { const auto active_index = this->compressedIndexForInterior(connection.global_index()); const auto connIsOpen = connection.state() == Connection::State::OPEN; if (active_index >= 0) { connIdxMap.addActiveConnection(connection_index, connIsOpen); } if ((connIsOpen && (active_index >= 0)) || !connIsOpen) { checker.connectionFound(connection_index); } if (connIsOpen) { if (active_index >= 0) { if (firstOpenConnection) { hasFirstConnection = true; } auto pd = PerforationData{}; pd.cell_index = active_index; pd.connection_transmissibility_factor = connection.CF(); pd.satnum_id = connection.satTableId(); pd.ecl_index = connection_index; well_perf_data_[well_index].push_back(pd); parallelWellInfo.pushBackEclIndex(connection_index_above, connection_index); } firstOpenConnection = false; // Next time this index is the one above as each open // connection is stored somewhere. connection_index_above = connection_index; } else if (connection.state() != Connection::State::SHUT) { OPM_THROW(std::runtime_error, fmt::format("Connection state '{}' not handled", Connection::State2String(connection.state()))); } // Note: we rely on the connections being filtered! I.e., there // are only connections to active cells in the global grid. ++connection_index; } parallelWellInfo.endReset(); checker.checkAllConnectionsFound(); parallelWellInfo.communicateFirstPerforation(hasFirstConnection); ++well_index; } } void BlackoilWellModelGeneric:: checkGEconLimits( const Group& group, const double simulation_time, const int report_step_idx, DeferredLogger& deferred_logger) { // call recursively down the group hiearchy for (const std::string& group_name : group.groups()) { checkGEconLimits( schedule().getGroup(group_name, report_step_idx), simulation_time, report_step_idx, deferred_logger); } // check if gecon is used for this group if (!schedule()[report_step_idx].gecon().has_group(group.name())) { return; } GroupEconomicLimitsChecker checker { *this, wellTestState(), group, simulation_time, report_step_idx, deferred_logger }; if (checker.minOilRate() || checker.minGasRate()) { checker.closeWells(); } else if (checker.waterCut() || checker.GOR() || checker.WGR()) { checker.doWorkOver(); } if (checker.endRun() && (checker.numProducersOpenInitially() >= 1) && (checker.numProducersOpen() == 0)) { checker.activateEndRun(); } } void BlackoilWellModelGeneric:: checkGconsaleLimits(const Group& group, WellState& well_state, const int reportStepIdx, DeferredLogger& deferred_logger) { // call recursively down the group hiearchy for (const std::string& groupName : group.groups()) { checkGconsaleLimits( schedule().getGroup(groupName, reportStepIdx), well_state, reportStepIdx, deferred_logger); } // only for groups with gas injection controls if (!group.hasInjectionControl(Phase::GAS)) { return; } // check if gconsale is used for this group if (!schedule()[reportStepIdx].gconsale().has(group.name())) return; std::string ss; const auto& gconsale = schedule()[reportStepIdx].gconsale().get(group.name(), summaryState_); const Group::ProductionCMode& oldProductionControl = this->groupState().production_control(group.name()); int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; double production_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/false); double injection_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), well_state, reportStepIdx, gasPos, /*isInjector*/true); // sum over all nodes injection_rate = comm_.sum(injection_rate); production_rate = comm_.sum(production_rate); double sales_rate = production_rate - injection_rate; double production_target = gconsale.sales_target + injection_rate; // add import rate and subtract consumption rate for group for gas if (schedule()[reportStepIdx].gconsump().has(group.name())) { const auto& gconsump = schedule()[reportStepIdx].gconsump().get(group.name(), summaryState_); if (phase_usage_.phase_used[BlackoilPhases::Vapour]) { sales_rate += gconsump.import_rate; sales_rate -= gconsump.consumption_rate; production_target -= gconsump.import_rate; production_target += gconsump.consumption_rate; } } if (sales_rate > gconsale.max_sales_rate) { switch(gconsale.max_proc) { case GConSale::MaxProcedure::NONE: { if (oldProductionControl != Group::ProductionCMode::GRAT && oldProductionControl != Group::ProductionCMode::NONE) { ss = fmt::format("Group sales exceed maximum limit, but the action is NONE for {}. Nothing happens", group.name()); } break; } case GConSale::MaxProcedure::CON: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON not implemented", deferred_logger); break; } case GConSale::MaxProcedure::CON_P: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit CON_P not implemented", deferred_logger); break; } case GConSale::MaxProcedure::WELL: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit WELL not implemented", deferred_logger); break; } case GConSale::MaxProcedure::PLUG: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit PLUG not implemented", deferred_logger); break; } case GConSale::MaxProcedure::MAXR: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit MAXR not implemented", deferred_logger); break; } case GConSale::MaxProcedure::END: { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + "GCONSALE exceed limit END not implemented", deferred_logger); break; } case GConSale::MaxProcedure::RATE: { this->groupState().production_control(group.name(), Group::ProductionCMode::GRAT); ss = fmt::format("Maximum GCONSALE limit violated for {}. " "The group is switched from {} to {} " "and limited by the maximum sales rate after " "consumption and import are considered", group.name(), Group::ProductionCMode2String(oldProductionControl), Group::ProductionCMode2String(Group::ProductionCMode::GRAT)); this->groupState().update_grat_sales_target(group.name(), production_target); break; } default: throw("Invalid procedure for maximum rate limit selected for group" + group.name()); } } if (sales_rate < gconsale.min_sales_rate) { const Group::ProductionCMode& currentProductionControl = this->groupState().production_control(group.name()); if ( currentProductionControl == Group::ProductionCMode::GRAT ) { ss = fmt::format("Group {} has sale rate less then minimum permitted value and is under GRAT control.\n" "The GRAT is increased to meet the sales minimum rate.", group.name()); this->groupState().update_grat_sales_target(group.name(), production_target); //} else if () {//TODO add action for WGASPROD //} else if () {//TODO add action for drilling queue } else { ss = fmt::format("Group {} has sale rate less then minimum permitted value but cannot increase the group production rate \n" "or adjust gas production using WGASPROD or drill new wells to meet the sales target. \n" "Note that WGASPROD and drilling queues are not implemented in Flow. No action is taken.", group.name()); } } if (gconsale.sales_target < 0.0) { OPM_DEFLOG_THROW(std::runtime_error, "Group " + group.name() + " has sale rate target less then zero. Not implemented in Flow" , deferred_logger); } if (!ss.empty() && comm_.rank() == 0) deferred_logger.info(ss); } bool BlackoilWellModelGeneric:: checkGroupHigherConstraints(const Group& group, DeferredLogger& deferred_logger, const int reportStepIdx) { // Set up coefficients for RESV <-> surface rate conversion. // Use the pvtRegionIdx from the top cell of the first well. // TODO fix this! // This is only used for converting RESV rates. // What is the proper approach? const int fipnum = 0; int pvtreg = well_perf_data_.empty() || well_perf_data_[0].empty() ? pvt_region_idx_[0] : pvt_region_idx_[well_perf_data_[0][0].cell_index]; bool changed = false; if ( comm_.size() > 1) { // Just like in the sequential case the pvtregion is determined // by the first cell of the first well. What is the first well // is decided by the order in the Schedule using Well::seqIndex() int firstWellIndex = well_perf_data_.empty() ? std::numeric_limits::max() : wells_ecl_[0].seqIndex(); auto regIndexPair = std::make_pair(pvtreg, firstWellIndex); std::vector pairs(comm_.size()); comm_.allgather(®IndexPair, 1, pairs.data()); pvtreg = std::min_element(pairs.begin(), pairs.end(), [](const auto& p1, const auto& p2){ return p1.second < p2.second;}) ->first; } std::vector rates(phase_usage_.num_phases, 0.0); bool isField = group.name() == "FIELD"; if (!isField && group.isInjectionGroup()) { // Obtain rates for group. std::vector resv_coeff_inj(phase_usage_.num_phases, 0.0); calcInjRates(fipnum, pvtreg, resv_coeff_inj); for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) { const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ true); // Sum over all processes rates[phasePos] = comm_.sum(local_current_rate); } const Phase all[] = { Phase::WATER, Phase::OIL, Phase::GAS }; for (Phase phase : all) { // Check higher up only if under individual (not FLD) control. auto currentControl = this->groupState().injection_control(group.name(), phase); if (currentControl != Group::InjectionCMode::FLD && group.injectionGroupControlAvailable(phase)) { const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx); const auto [is_changed, scaling_factor] = WellGroupHelpers::checkGroupConstraintsInj( group.name(), group.parent(), parentGroup, this->wellState(), this->groupState(), reportStepIdx, &guideRate_, rates.data(), phase, phase_usage_, group.getGroupEfficiencyFactor(), schedule(), summaryState_, resv_coeff_inj, deferred_logger); if (is_changed) { switched_inj_groups_.insert_or_assign({group.name(), phase}, Group::InjectionCMode2String(Group::InjectionCMode::FLD)); BlackoilWellModelConstraints(*this). actionOnBrokenConstraints(group, Group::InjectionCMode::FLD, phase, this->groupState(), deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(scaling_factor, group, schedule(), reportStepIdx, /* isInjector */ true, this->groupState(), this->wellState()); changed = true; } } } } if (!isField && group.isProductionGroup()) { // Obtain rates for group. for (int phasePos = 0; phasePos < phase_usage_.num_phases; ++phasePos) { const double local_current_rate = WellGroupHelpers::sumWellSurfaceRates(group, schedule(), this->wellState(), reportStepIdx, phasePos, /* isInjector */ false); // Sum over all processes rates[phasePos] = -comm_.sum(local_current_rate); } std::vector resv_coeff(phase_usage_.num_phases, 0.0); calcRates(fipnum, pvtreg, this->groupState().production_rates(group.name()), resv_coeff); // Check higher up only if under individual (not FLD) control. const Group::ProductionCMode& currentControl = this->groupState().production_control(group.name()); if (currentControl != Group::ProductionCMode::FLD && group.productionGroupControlAvailable()) { const Group& parentGroup = schedule().getGroup(group.parent(), reportStepIdx); const auto [is_changed, scaling_factor] = WellGroupHelpers::checkGroupConstraintsProd( group.name(), group.parent(), parentGroup, this->wellState(), this->groupState(), reportStepIdx, &guideRate_, rates.data(), phase_usage_, group.getGroupEfficiencyFactor(), schedule(), summaryState_, resv_coeff, deferred_logger); if (is_changed) { switched_prod_groups_.insert_or_assign(group.name(), Group::ProductionCMode2String(Group::ProductionCMode::FLD)); const auto group_limit_action = group.productionControls(summaryState_).group_limit_action; BlackoilWellModelConstraints(*this). actionOnBrokenConstraints(group, group_limit_action, Group::ProductionCMode::FLD, this->groupState(), deferred_logger); WellGroupHelpers::updateWellRatesFromGroupTargetScale(scaling_factor, group, schedule(), reportStepIdx, /* isInjector */ false, this->groupState(), this->wellState()); changed = true; } } } return changed; } void BlackoilWellModelGeneric:: updateEclWells(const int timeStepIdx, const std::unordered_set& wells, const SummaryState& st) { for (const auto& wname : wells) { auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&wname] (const auto& well) -> bool { return well.name() == wname; }); if (well_iter == this->wells_ecl_.end()) { continue; } auto well_index = std::distance(this->wells_ecl_.begin(), well_iter); this->wells_ecl_[well_index] = schedule_.getWell(wname, timeStepIdx); const auto& well = this->wells_ecl_[well_index]; auto& pd = this->well_perf_data_[well_index]; auto pdIter = pd.begin(); for (const auto& conn : well.getConnections()) { if (conn.state() != Connection::State::SHUT) { pdIter->connection_transmissibility_factor = conn.CF(); ++pdIter; } } auto& ws = this->wellState().well(well_index); ws.updateStatus( well.getStatus() ); ws.reset_connection_factors(pd); ws.update_targets(well, st); this->prod_index_calc_[well_index].reInit(well); } } double BlackoilWellModelGeneric:: wellPI(const int well_index) const { const auto& pu = this->phase_usage_; const auto& pi = this->wellState().well(well_index).productivity_index; const auto preferred = this->wells_ecl_[well_index].getPreferredPhase(); switch (preferred) { // Should really have LIQUID = OIL + WATER here too... case Phase::WATER: return pu.phase_used[BlackoilPhases::PhaseIndex::Aqua] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Aqua]] : 0.0; case Phase::OIL: return pu.phase_used[BlackoilPhases::PhaseIndex::Liquid] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Liquid]] : 0.0; case Phase::GAS: return pu.phase_used[BlackoilPhases::PhaseIndex::Vapour] ? pi[pu.phase_pos[BlackoilPhases::PhaseIndex::Vapour]] : 0.0; default: throw std::invalid_argument { "Unsupported preferred phase " + std::to_string(static_cast(preferred)) }; } } double BlackoilWellModelGeneric:: wellPI(const std::string& well_name) const { auto well_iter = std::find_if(this->wells_ecl_.begin(), this->wells_ecl_.end(), [&well_name](const Well& well) { return well.name() == well_name; }); if (well_iter == this->wells_ecl_.end()) { throw std::logic_error { "Could not find well: " + well_name }; } auto well_index = std::distance(this->wells_ecl_.begin(), well_iter); return this->wellPI(well_index); } bool BlackoilWellModelGeneric:: wasDynamicallyShutThisTimeStep(const int well_index) const { return this->closed_this_step_.find(this->wells_ecl_[well_index].name()) != this->closed_this_step_.end(); } void BlackoilWellModelGeneric:: updateWsolvent(const Group& group, const int reportStepIdx, const WellState& wellState) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx); updateWsolvent(groupTmp, reportStepIdx, wellState); } if (group.isProductionGroup()) return; auto currentGroupControl = this->groupState().injection_control(group.name(), Phase::GAS); if( currentGroupControl == Group::InjectionCMode::REIN ) { int gasPos = phase_usage_.phase_pos[BlackoilPhases::Vapour]; const auto& controls = group.injectionControls(Phase::GAS, summaryState_); const Group& groupRein = schedule_.getGroup(controls.reinj_group, reportStepIdx); double gasProductionRate = WellGroupHelpers::sumWellSurfaceRates(groupRein, schedule_, wellState, reportStepIdx, gasPos, /*isInjector*/false); double solventProductionRate = WellGroupHelpers::sumSolventRates(groupRein, schedule_, wellState, reportStepIdx, /*isInjector*/false); solventProductionRate = comm_.sum(solventProductionRate); gasProductionRate = comm_.sum(gasProductionRate); double wsolvent = 0.0; if (std::abs(gasProductionRate) > 1e-6) wsolvent = solventProductionRate / gasProductionRate; setWsolvent(group, reportStepIdx, wsolvent); } } void BlackoilWellModelGeneric:: setWsolvent(const Group& group, const int reportStepIdx, double wsolvent) { for (const std::string& groupName : group.groups()) { const Group& groupTmp = schedule_.getGroup(groupName, reportStepIdx); setWsolvent(groupTmp, reportStepIdx, wsolvent); } for (const std::string& wellName : group.wells()) { const auto& wellTmp = schedule_.getWell(wellName, reportStepIdx); if (wellTmp.getStatus() == Well::Status::SHUT) continue; getGenWell(wellName)->setWsolvent(wsolvent); } } void BlackoilWellModelGeneric:: assignShutConnections(data::Wells& wsrpt, const int reportStepIndex) const { auto wellID = 0; for (const auto& well : this->wells_ecl_) { auto& xwel = wsrpt[well.name()]; // data::Wells is a std::map<> xwel.dynamicStatus = this->schedule() .getWell(well.name(), reportStepIndex).getStatus(); const auto wellIsOpen = xwel.dynamicStatus == Well::Status::OPEN; auto skip = [wellIsOpen](const Connection& conn) { return wellIsOpen && (conn.state() != Connection::State::SHUT); }; if (this->wellTestState().well_is_closed(well.name()) && !this->wasDynamicallyShutThisTimeStep(wellID)) { xwel.dynamicStatus = well.getAutomaticShutIn() ? Well::Status::SHUT : Well::Status::STOP; } auto& xcon = xwel.connections; for (const auto& conn : well.getConnections()) { if (skip(conn)) { continue; } auto& xc = xcon.emplace_back(); xc.index = conn.global_index(); xc.pressure = xc.reservoir_rate = 0.0; xc.effective_Kh = conn.Kh(); xc.trans_factor = conn.CF(); } ++wellID; } } void BlackoilWellModelGeneric:: assignGroupControl(const Group& group, data::GroupData& gdata) const { const auto& gname = group.name(); const auto grup_type = group.getGroupType(); auto& cgc = gdata.currentControl; cgc.currentProdConstraint = Group::ProductionCMode::NONE; cgc.currentGasInjectionConstraint = cgc.currentWaterInjectionConstraint = Group::InjectionCMode::NONE; if (this->groupState().has_production_control(gname)) { cgc.currentProdConstraint = this->groupState().production_control(gname); } if ((grup_type == ::Opm::Group::GroupType::INJECTION) || (grup_type == ::Opm::Group::GroupType::MIXED)) { if (this->groupState().has_injection_control(gname, Phase::WATER)) { cgc.currentWaterInjectionConstraint = this->groupState().injection_control(gname, Phase::WATER); } if (this->groupState().has_injection_control(gname, Phase::GAS)) { cgc.currentGasInjectionConstraint = this->groupState().injection_control(gname, Phase::GAS); } } } void BlackoilWellModelGeneric:: assignGroupValues(const int reportStepIdx, std::map& gvalues) const { const auto groupGuideRates = BlackoilWellModelGuideRates(*this).calculateAllGroupGuideRates(reportStepIdx); for (const auto& gname : schedule_.groupNames(reportStepIdx)) { const auto& grup = schedule_.getGroup(gname, reportStepIdx); auto& gdata = gvalues[gname]; this->assignGroupControl(grup, gdata); BlackoilWellModelGuideRates(*this).assignGroupGuideRates(grup, groupGuideRates, gdata); } } void BlackoilWellModelGeneric:: assignNodeValues(std::map& nodevalues) const { nodevalues.clear(); for (const auto& [node, pressure] : node_pressures_) { nodevalues.emplace(node, data::NodeData{pressure}); } } data::GroupAndNetworkValues BlackoilWellModelGeneric:: groupAndNetworkData(const int reportStepIdx) const { auto grp_nwrk_values = data::GroupAndNetworkValues{}; this->assignGroupValues(reportStepIdx, grp_nwrk_values.groupData); this->assignNodeValues(grp_nwrk_values.nodeData); return grp_nwrk_values; } void BlackoilWellModelGeneric:: updateAndCommunicateGroupData(const int reportStepIdx, const int iterationIdx) { const Group& fieldGroup = schedule().getGroup("FIELD", reportStepIdx); const int nupcol = schedule()[reportStepIdx].nupcol(); // This builds some necessary lookup structures, so it must be called // before we copy to well_state_nupcol_. this->wellState().updateGlobalIsGrup(comm_); if (iterationIdx < nupcol) { this->updateNupcolWGState(); } auto& well_state = this->wellState(); const auto& well_state_nupcol = this->nupcolWellState(); // the group target reduction rates needs to be update since wells may have switched to/from GRUP control // The group target reduction does not honor NUPCOL. std::vector groupTargetReduction(numPhases(), 0.0); WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ false, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReduction); std::vector groupTargetReductionInj(numPhases(), 0.0); WellGroupHelpers::updateGroupTargetReduction(fieldGroup, schedule(), reportStepIdx, /*isInjector*/ true, phase_usage_, guideRate_, well_state, this->groupState(), groupTargetReductionInj); WellGroupHelpers::updateREINForGroups(fieldGroup, schedule(), reportStepIdx, phase_usage_, summaryState_, well_state_nupcol, this->groupState(), comm_.rank()==0); WellGroupHelpers::updateVREPForGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateReservoirRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateSurfaceRatesInjectionGroups(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); WellGroupHelpers::updateGroupProductionRates(fieldGroup, schedule(), reportStepIdx, well_state_nupcol, this->groupState()); // We use the rates from the previous time-step to reduce oscillations WellGroupHelpers::updateWellRates(fieldGroup, schedule(), reportStepIdx, this->prevWellState(), well_state); // Set ALQ for off-process wells to zero for (const auto& wname : schedule().wellNames(reportStepIdx)) { const bool is_producer = schedule().getWell(wname, reportStepIdx).isProducer(); const bool not_on_this_process = !well_state.has(wname); if (is_producer && not_on_this_process) { well_state.setALQ(wname, 0.0); } } well_state.communicateGroupRates(comm_); this->groupState().communicate_rates(comm_); } bool BlackoilWellModelGeneric:: hasTHPConstraints() const { return BlackoilWellModelConstraints(*this).hasTHPConstraints(); } void BlackoilWellModelGeneric:: updateNetworkActiveState(const int report_step) { const auto& network = schedule()[report_step].network(); if (!network.active()) { this->network_active_ = false; return; } bool network_active = false; for (const auto& well : well_container_generic_) { const bool is_partof_network = network.has_node(well->wellEcl().groupName()); const bool prediction_mode = well->wellEcl().predictionMode(); if (is_partof_network && prediction_mode) { network_active = true; break; } } this->network_active_ = comm_.max(network_active); } bool BlackoilWellModelGeneric:: needPreStepNetworkRebalance(const int report_step) const { const auto& network = schedule()[report_step].network(); bool network_rebalance_necessary = false; for (const auto& well : well_container_generic_) { const bool is_partof_network = network.has_node(well->wellEcl().groupName()); // TODO: we might find more relevant events to be included here (including network change events?) const auto& events = this->wellState().well(well->indexOfWell()).events; if (is_partof_network && events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE)) { network_rebalance_necessary = true; break; } } network_rebalance_necessary = comm_.max(network_rebalance_necessary); return network_rebalance_necessary; } bool BlackoilWellModelGeneric:: forceShutWellByName(const std::string& wellname, const double simulation_time) { // Only add the well to the closed list on the // process that owns it. int well_was_shut = 0; for (const auto& well : well_container_generic_) { if (well->name() == wellname) { wellTestState().close_well(wellname, WellTestConfig::Reason::PHYSICAL, simulation_time); well_was_shut = 1; break; } } // Communicate across processes if a well was shut. well_was_shut = comm_.max(well_was_shut); // the wellTesteState is updated between timesteps and we also need to update the privous WGstate if(well_was_shut) this->commitWGState(); // Only log a message on the output rank. if (terminal_output_ && well_was_shut) { const std::string msg = "Well " + wellname + " will be shut because it fails to converge."; OpmLog::info(msg); } return (well_was_shut == 1); } void BlackoilWellModelGeneric:: inferLocalShutWells() { this->local_shut_wells_.clear(); const auto nw = this->numLocalWells(); auto used = std::vector(nw, false); for (const auto& wellPtr : this->well_container_generic_) { used[wellPtr->indexOfWell()] = true; } for (auto wellID = 0; wellID < nw; ++wellID) { if (! used[wellID]) { this->local_shut_wells_.push_back(wellID); } } } double BlackoilWellModelGeneric:: updateNetworkPressures(const int reportStepIdx) { // Get the network and return if inactive (no wells in network at this time) const auto& network = schedule()[reportStepIdx].network(); if (!network.active()) { return 0.0; } const auto previous_node_pressures = node_pressures_; node_pressures_ = WellGroupHelpers::computeNetworkPressures(network, this->wellState(), this->groupState(), *(vfp_properties_->getProd()), schedule(), reportStepIdx); // here, the network imbalance is the difference between the previous nodal pressure and the new nodal pressure double network_imbalance = 0.; if (!this->networkActive()) return network_imbalance; if (!previous_node_pressures.empty()) { for (const auto& [name, pressure]: previous_node_pressures) { const auto new_pressure = node_pressures_.at(name); const double change = (new_pressure - pressure); if (std::abs(change) > network_imbalance) { network_imbalance = std::abs(change); } // we dampen the amount of the nodal pressure can change during one iteration // due to the fact our nodal pressure calculation is somewhat explicit // TODO: the following parameters are subject to adjustment for optimization purpose constexpr double upper_update_bound = 5.0 * unit::barsa; constexpr double lower_update_bound = 0.05 * unit::barsa; // relative dampening factor based on update value constexpr double damping_factor = 0.1; const double allowed_change = std::max(std::min(damping_factor * std::abs(change), upper_update_bound), lower_update_bound); if (std::abs(change) > allowed_change) { const double sign = change > 0 ? 1. : -1.; node_pressures_[name] = pressure + sign * allowed_change; } } } else { for (const auto& [name, pressure]: node_pressures_) { if (std::abs(pressure) > network_imbalance) { network_imbalance = std::abs(pressure); } } } for (auto& well : well_container_generic_) { // Producers only, since we so far only support the // "extended" network model (properties defined by // BRANPROP and NODEPROP) which only applies to producers. if (well->isProducer() && well->wellEcl().predictionMode()) { const auto it = node_pressures_.find(well->wellEcl().groupName()); if (it != node_pressures_.end()) { // The well belongs to a group with has a network pressure constraint, // set the dynamic THP constraint of the well accordingly. const double new_limit = it->second; well->setDynamicThpLimit(new_limit); SingleWellState& ws = this->wellState()[well->indexOfWell()]; const bool thp_is_limit = ws.production_cmode == Well::ProducerCMode::THP; // TODO: not sure why the thp is NOT updated properly elsewhere if (thp_is_limit) { ws.thp = well->getTHPConstraint(summaryState_); } } } } return network_imbalance; } void BlackoilWellModelGeneric:: calculateEfficiencyFactors(const int reportStepIdx) { for (auto& well : well_container_generic_) { const Well& wellEcl = well->wellEcl(); double well_efficiency_factor = wellEcl.getEfficiencyFactor(); WellGroupHelpers::accumulateGroupEfficiencyFactor(schedule().getGroup(wellEcl.groupName(), reportStepIdx), schedule(), reportStepIdx, well_efficiency_factor); well->setWellEfficiencyFactor(well_efficiency_factor); } } WellInterfaceGeneric* BlackoilWellModelGeneric:: getGenWell(const std::string& well_name) { // finding the iterator of the well in wells_ecl auto well = std::find_if(well_container_generic_.begin(), well_container_generic_.end(), [&well_name](const WellInterfaceGeneric* elem)->bool { return elem->name() == well_name; }); assert(well != well_container_generic_.end()); return *well; } void BlackoilWellModelGeneric:: setRepRadiusPerfLength() { for (const auto& well : well_container_generic_) { well->setRepRadiusPerfLength(); } } void BlackoilWellModelGeneric:: gliftDebug(const std::string& msg, DeferredLogger& deferred_logger) const { if (this->glift_debug && this->terminal_output_) { const std::string message = fmt::format( " GLIFT (DEBUG) : BlackoilWellModel : {}", msg); deferred_logger.info(message); } } void BlackoilWellModelGeneric:: gliftDebugShowALQ(DeferredLogger& deferred_logger) { for (auto& well : this->well_container_generic_) { if (well->isProducer()) { auto alq = this->wellState().getALQ(well->name()); const std::string msg = fmt::format("ALQ_REPORT : {} : {}", well->name(), alq); gliftDebug(msg, deferred_logger); } } } // If a group has any production rate constraints, and/or a limit // on its total rate of lift gas supply, allocate lift gas // preferentially to the wells that gain the most benefit from // it. Lift gas increments are allocated in turn to the well that // currently has the largest weighted incremental gradient. The // procedure takes account of any limits on the group production // rate or lift gas supply applied to any level of group. void BlackoilWellModelGeneric:: gasLiftOptimizationStage2(DeferredLogger& deferred_logger, GLiftProdWells& prod_wells, GLiftOptWells& glift_wells, GasLiftGroupInfo& group_info, GLiftWellStateMap& glift_well_state_map, const int episodeIndex) { GasLiftStage2 glift {episodeIndex, comm_, schedule_, summaryState_, deferred_logger, this->wellState(), this->groupState(), prod_wells, glift_wells, group_info, glift_well_state_map, this->glift_debug }; glift.runOptimize(); } void BlackoilWellModelGeneric:: updateWellPotentials(const int reportStepIdx, const bool onlyAfterEvent, const SummaryConfig& summaryConfig, DeferredLogger& deferred_logger) { auto well_state_copy = this->wellState(); const bool write_restart_file = schedule().write_rst_file(reportStepIdx); auto exc_type = ExceptionType::NONE; std::string exc_msg; std::size_t widx = 0; for (const auto& well : well_container_generic_) { const bool needed_for_summary = ((summaryConfig.hasSummaryKey( "WWPI:" + well->name()) || summaryConfig.hasSummaryKey( "WOPI:" + well->name()) || summaryConfig.hasSummaryKey( "WGPI:" + well->name())) && well->isInjector()) || ((summaryConfig.hasKeyword( "GWPI") || summaryConfig.hasKeyword( "GOPI") || summaryConfig.hasKeyword( "GGPI")) && well->isInjector()) || ((summaryConfig.hasKeyword( "FWPI") || summaryConfig.hasKeyword( "FOPI") || summaryConfig.hasKeyword( "FGPI")) && well->isInjector()) || ((summaryConfig.hasSummaryKey( "WWPP:" + well->name()) || summaryConfig.hasSummaryKey( "WOPP:" + well->name()) || summaryConfig.hasSummaryKey( "WGPP:" + well->name())) && well->isProducer()) || ((summaryConfig.hasKeyword( "GWPP") || summaryConfig.hasKeyword( "GOPP") || summaryConfig.hasKeyword( "GGPP")) && well->isProducer()) || ((summaryConfig.hasKeyword( "FWPP") || summaryConfig.hasKeyword( "FOPP") || summaryConfig.hasKeyword( "FGPP")) && well->isProducer()); // At the moment, the following events are considered // for potentials update const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE + ScheduleEvents::COMPLETION_CHANGE + ScheduleEvents::WELL_PRODUCTIVITY_INDEX + ScheduleEvents::WELL_WELSPECS_UPDATE + ScheduleEvents::WELLGROUP_EFFICIENCY_UPDATE + ScheduleEvents::NEW_WELL + ScheduleEvents::PRODUCTION_UPDATE + ScheduleEvents::INJECTION_UPDATE; const auto& events = schedule()[reportStepIdx].wellgroup_events(); const bool event = events.hasEvent(well->name(), ScheduleEvents::ACTIONX_WELL_EVENT) || (report_step_starts_ && events.hasEvent(well->name(), effective_events_mask)); const bool needPotentialsForGuideRates = well->underPredictionMode() && (!onlyAfterEvent || event); const bool needPotentialsForOutput = !onlyAfterEvent && (needed_for_summary || write_restart_file); const bool compute_potential = needPotentialsForOutput || needPotentialsForGuideRates; if (compute_potential) { this->computePotentials(widx, well_state_copy, exc_msg, exc_type, deferred_logger); } ++widx; } logAndCheckForExceptionsAndThrow(deferred_logger, exc_type, "computeWellPotentials() failed: " + exc_msg, terminal_output_, comm_); } void BlackoilWellModelGeneric:: runWellPIScaling(const int reportStepIdx, DeferredLogger& local_deferredLogger) { if (this->last_run_wellpi_.has_value() && (*this->last_run_wellpi_ == reportStepIdx)) { // We've already run WELPI scaling for this report step. Most // common for the very first report step. Don't redo WELPI scaling. return; } auto hasWellPIEvent = [this, reportStepIdx](const int well_index) -> bool { return this->schedule()[reportStepIdx].wellgroup_events() .hasEvent(this->wells_ecl_[well_index].name(), ScheduleEvents::Events::WELL_PRODUCTIVITY_INDEX); }; auto updateEclWell = [this, reportStepIdx](const int well_index) -> void { const auto& schedule = this->schedule(); const auto& wname = this->wells_ecl_[well_index].name(); this->wells_ecl_[well_index] = schedule.getWell(wname, reportStepIdx); const auto& well = this->wells_ecl_[well_index]; auto& pd = this->well_perf_data_[well_index]; auto pdIter = pd.begin(); for (const auto& conn : well.getConnections()) { if (conn.state() != Connection::State::SHUT) { pdIter->connection_transmissibility_factor = conn.CF(); ++pdIter; } } auto& ws = this->wellState().well(well_index); ws.reset_connection_factors(pd); this->prod_index_calc_[well_index].reInit(well); }; auto rescaleWellPI = [this, reportStepIdx](const int well_index, const double newWellPI) -> void { const auto& wname = this->wells_ecl_[well_index].name(); schedule_.applyWellProdIndexScaling(wname, reportStepIdx, newWellPI); }; // Minimal well setup to compute PI/II values { auto saved_previous_wgstate = this->prevWGState(); this->commitWGState(); this->createWellContainer(reportStepIdx); this->inferLocalShutWells(); this->initWellContainer(reportStepIdx); this->calculateProductivityIndexValues(local_deferredLogger); this->calculateProductivityIndexValuesShutWells(reportStepIdx, local_deferredLogger); this->commitWGState(std::move(saved_previous_wgstate)); } const auto nw = this->numLocalWells(); for (auto wellID = 0*nw; wellID < nw; ++wellID) { if (hasWellPIEvent(wellID)) { rescaleWellPI(wellID, this->wellPI(wellID)); updateEclWell(wellID); } } this->last_run_wellpi_ = reportStepIdx; } bool BlackoilWellModelGeneric:: shouldBalanceNetwork(const int reportStepIdx, const int iterationIdx) const { // if network is not active, we do not need to balance the network const auto& network = schedule()[reportStepIdx].network(); if (!network.active()) { return false; } const auto& balance = schedule()[reportStepIdx].network_balance(); if (balance.mode() == Network::Balance::CalcMode::TimeStepStart) { return iterationIdx == 0; } else if (balance.mode() == Network::Balance::CalcMode::NUPCOL) { const int nupcol = schedule()[reportStepIdx].nupcol(); return iterationIdx < nupcol; } else { // We do not support any other rebalancing modes, // i.e. TimeInterval based rebalancing is not available. // This should be warned about elsewhere, so we choose to // avoid spamming with a warning here. return false; } } std::vector BlackoilWellModelGeneric:: getCellsForConnections(const Well& well) const { std::vector wellCells; // All possible connections of the well const auto& connectionSet = well.getConnections(); wellCells.reserve(connectionSet.size()); for (const auto& connection : connectionSet) { int compressed_idx = compressedIndexForInterior(connection.global_index()); if (compressed_idx >= 0) { // Ignore connections in inactive/remote cells. wellCells.push_back(compressed_idx); } } return wellCells; } std::vector BlackoilWellModelGeneric::getWellsForTesting(const int timeStepIdx, const double simulationTime) { const auto& wtest_config = schedule()[timeStepIdx].wtest_config(); if (!wtest_config.empty()) { // there is a WTEST request return wellTestState().test_wells(wtest_config, simulationTime); } else return {}; } void BlackoilWellModelGeneric:: assignWellTracerRates(data::Wells& wsrpt, const WellTracerRates& wellTracerRates) const { if (wellTracerRates.empty()) return; // no tracers for (const auto& wTR : wellTracerRates) { std::string wellName = wTR.first.first; auto xwPos = wsrpt.find(wellName); if (xwPos == wsrpt.end()) { // No well results. continue; } std::string tracerName = wTR.first.second; double rate = wTR.second; xwPos->second.rates.set(data::Rates::opt::tracer, rate, tracerName); } } std::vector> BlackoilWellModelGeneric:: getMaxWellConnections() const { std::vector> wells; auto schedule_wells = schedule().getWellsatEnd(); schedule_wells.erase(std::remove_if(schedule_wells.begin(), schedule_wells.end(), not_on_process_), schedule_wells.end()); wells.reserve(schedule_wells.size()); // initialize the additional cell connections introduced by wells. for ( const auto& well : schedule_wells ) { std::vector compressed_well_perforations = this->getCellsForConnections(well); // also include wells with no perforations in case std::sort(compressed_well_perforations.begin(), compressed_well_perforations.end()); wells.push_back(compressed_well_perforations); } return wells; } int BlackoilWellModelGeneric::numLocalWellsEnd() const { auto w = schedule().getWellsatEnd(); w.erase(std::remove_if(w.begin(), w.end(), not_on_process_), w.end()); return w.size(); } int BlackoilWellModelGeneric::numLocalNonshutWells() const { return well_container_generic_.size(); } void BlackoilWellModelGeneric::initInjMult() { for (auto& well : this->well_container_generic_) { if (well->isInjector() && well->wellEcl().getInjMultMode() != Well::InjMultMode::NONE) { const auto& ws = this->wellState().well(well->indexOfWell()); const auto& perf_data = ws.perf_data; auto &values = this->prev_inj_multipliers_[well->name()]; if (values.empty()) { values.assign(perf_data.size(), 1.0); } well->initInjMult(values); } } } void BlackoilWellModelGeneric::updateFiltrationParticleVolume(const double dt, const std::size_t water_index) { for (auto& well : this->well_container_generic_) { if (well->isInjector()) { const double conc = well->wellEcl().evalFilterConc(this->summaryState_); if (conc > 0.) { auto fc = this->filter_cake_ .emplace(std::piecewise_construct, std::forward_as_tuple(well->name()), std::tuple{}); fc.first->second.updateFiltrationParticleVolume(*well, dt, conc, water_index, this->wellState()); } } } } void BlackoilWellModelGeneric::updateInjMult(DeferredLogger& deferred_logger) { for (const auto& well : this->well_container_generic_) { if (well->isInjector() && well->wellEcl().getInjMultMode() != Well::InjMultMode::NONE) { well->updateInjMult(this->prev_inj_multipliers_[well->name()], deferred_logger); } } } void BlackoilWellModelGeneric::updateInjFCMult(DeferredLogger& deferred_logger) { for (auto& well : this->well_container_generic_) { if (well->isInjector()) { const auto it = filter_cake_.find(well->name()); if (it != filter_cake_.end()) { it->second.updateInjFCMult(*well, this->wellState(), deferred_logger); well->updateFilterCakeMultipliers(it->second.multipliers()); } } } } }