/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
namespace Opm
{
template
MultisegmentWell::
MultisegmentWell(const Well* well, const int time_step, const Wells* wells)
: Base(well, time_step, wells)
, segment_perforations_(numberOfSegments())
, segment_inlets_(numberOfSegments())
, perforation_cell_pressure_diffs_(number_of_perforations_, 0.0)
, segment_perforation_depth_diffs_(number_of_perforations_)
, segment_comp_initial_(numberOfSegments(), std::vector(numComponents(), 0.0))
, segment_densities_(numberOfSegments(), 0.0)
, segment_depth_diffs_(numberOfSegments(), 0.0)
{
// TODO: to see what information we need to process here later.
// const auto& completion_set = well->getCompletions(time_step);
// const auto& segment_set = well->getSegmentSet(time_step);
// since we decide to use the SegmentSet from the well parser. we can reuse a lot from it.
// other facilities needed we need to process them here
// initialize the segment_perforations_
const CompletionSet& completion_set = well_ecl_->getCompletions(current_step_);
for (int perf = 0; perf < number_of_perforations_; ++perf) {
const Completion& completion = completion_set.get(perf);
const int segment_number = completion.getSegmentNumber();
const int segment_location = numberToLocation(segment_number);
segment_perforations_[segment_location].push_back(perf);
}
// initialize the segment_inlets_
for (int seg = 0; seg < numberOfSegments(); ++seg) {
const Segment& segment = segmentSet()[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
// TODO: to make sure segment_location == seg here
const int segment_location = numberToLocation(segment_number);
const int outlet_segment_location = numberToLocation(outlet_segment_number);
segment_inlets_[outlet_segment_location].push_back(segment_location);
}
}
// callcuate the depth difference between perforations and their segments
}
template
void
MultisegmentWell::
init(const PhaseUsage* phase_usage_arg,
const std::vector* active_arg,
const std::vector& depth_arg,
const double gravity_arg,
const int num_cells)
{
Base::init(phase_usage_arg, active_arg,
depth_arg, gravity_arg, num_cells);
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
// for MultisegmentWell, it is much more complicated.
// It can be specified directly, it can be calculated from the segment depth,
// it can also use the cell center, which is the same for StandardWell.
// For the last case, should we update the depth with the depth_arg? For the
// future, it can be a source of wrong result with Multisegment well.
// An indicator from the opm-parser should indicate what kind of depth we should use here.
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
// specified perforation depth
initMatrixAndVectors(num_cells);
// calculating the depth difference between the segment and its oulet_segments
// for the top segment, we will make its zero unless we find other purpose to use this value
for (int seg = 1; seg < numberOfSegments(); ++seg) {
const double segment_depth = segmentSet()[seg].depth();
const int outlet_segment_number = segmentSet()[seg].outletSegment();
const Segment& outlet_segment = segmentSet()[numberToLocation(outlet_segment_number)];
const double outlet_depth = outlet_segment.depth();
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
}
}
template
void
MultisegmentWell::
initMatrixAndVectors(const int num_cells) const
{
duneB_.setBuildMode( OffDiagMatWell::row_wise );
duneC_.setBuildMode( OffDiagMatWell::row_wise );
duneD_.setBuildMode( DiagMatWell::row_wise );
// set the size and patterns for all the matrices and vectors
// [A C^T [x = [ res
// B D] x_well] res_well]
// calculatiing the NNZ for duneD_
// NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets)
{
int nnz_d = numberOfSegments();
for (const std::vector& inlets : segment_inlets_) {
nnz_d += 2 * inlets.size();
}
duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d);
}
duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
// we need to add the off diagonal ones
for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) {
// the number of the row corrspnds to the segment now
const int seg = row.index();
// adding the item related to outlet relation
const Segment& segment = segmentSet()[seg];
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) { // if there is a outlet_segment
const int outlet_segment_location = numberToLocation(outlet_segment_number);
row.insert(outlet_segment_location);
}
// Add nonzeros for diagonal
row.insert(seg);
// insert the item related to its inlets
for (const int& inlet : segment_inlets_[seg]) {
row.insert(inlet);
}
}
// make the C matrix
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
// make the B^T matrix
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) {
// the number of the row corresponds to the segment number now.
for (const int& perf : segment_perforations_[row.index()]) {
const int cell_idx = well_cells_[perf];
row.insert(cell_idx);
}
}
resWell_.resize( numberOfSegments() );
// resize temporary class variables
Bx_.resize( duneC_.N() );
// TODO: maybe this function need a different name for better meaning
primary_variables_.resize(numberOfSegments());
primary_variables_evaluation_.resize(numberOfSegments());
}
template
void
MultisegmentWell::
initPrimaryVariablesEvaluation() const
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
primary_variables_evaluation_[seg][eq_idx] = 0.0;
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0);
}
}
}
template
void
MultisegmentWell::
assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells)
{
// clear all entries
if (!only_wells) {
duneB_ = 0.0;
duneC_ = 0.0;
}
duneD_ = 0.0;
resWell_ = 0.0;
// for the black oil cases, there will be four equations,
// the first three of them are the mass balance equations, the last one is the pressure equations.
//
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
auto& ebosResid = ebosSimulator.model().linearizer().residual();
const bool allow_cf = getAllowCrossFlow();
const int nseg = numberOfSegments();
const int num_comp = numComponents();
// TODO: finding better place to put it
computeSegmentFluidProperties(ebosSimulator);
for (int seg = 0; seg < nseg; ++seg) {
// calculating the accumulation term // TODO: without considering the efficiencty factor for now
// volume of the semgent
{
const double volume = segmentSet()[seg].volume();
// for each component
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
EvalWell accumulation_term = volume / dt * (surfaceVolumeFraction(seg, comp_idx) - segment_comp_initial_[seg][comp_idx])
+ getSegmentRate(seg, comp_idx);
resWell_[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq);
}
}
}
// considering the contributions from the inlet segments
{
for (const int inlet : segment_inlets_[seg]) {
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
const EvalWell inlet_rate = getSegmentRate(inlet, comp_idx);
resWell_[seg][comp_idx] -= inlet_rate.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][inlet][comp_idx][pv_idx] -= inlet_rate.derivative(pv_idx + numEq);
}
}
}
}
// calculating the perforation rate for each perforation that belongs to this segment
const EvalWell seg_pressure = getSegmentPressure(seg);
for (const int perf : segment_perforations_[seg]) {
const int cell_idx = well_cells_[perf];
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
std::vector mob(num_comp, 0.0);
getMobility(ebosSimulator, perf, mob);
std::vector cq_s(num_comp, 0.0);
computePerfRate(int_quants, mob, seg, well_index_[perf], seg_pressure, allow_cf, cq_s);
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
// the cq_s entering mass balance equations need to consider the efficiency factors.
const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_;
if (!only_wells) {
// subtract sum of component fluxes in the reservoir equation.
// need to consider the efficiency factor
// TODO: the name of the function flowPhaseToEbosCompIdx is prolematic, since the input
// is a component index :D
ebosResid[cell_idx][flowPhaseToEbosCompIdx(comp_idx)] -= cq_s_effective.value();
}
// subtract sum of phase fluxes in the well equations.
resWell_[seg][comp_idx] -= cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
duneC_[seg][cell_idx][pv_idx][flowPhaseToEbosCompIdx(comp_idx)] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix
}
// the index name for the D should be eq_idx / pv_idx
duneD_[seg][seg][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx + numEq);
}
for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) {
if (!only_wells) {
// also need to consider the efficiency factor when manipulating the jacobians.
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(comp_idx)][pv_idx] -= cq_s_effective.derivative(pv_idx);
duneB_[seg][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx);
}
}
}
// should save the perforation pressure and perforation rates?
}
// the fourth dequation, the pressure drop equation
if (seg == 0) { // top segment, pressure equation is the control equation
assembleControlEq();
} else {
assemblePressureEq(seg);
}
}
}
template
void
MultisegmentWell::
updateWellStateWithTarget(const int current,
WellState& well_state) const
{
// TODO: it can be challenging, when updating the segment and perforation related,
// well rates needs to be okay.
// Updating well state bas on well control
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
const double target = well_controls_iget_target(well_controls_, current);
const double* distr = well_controls_iget_distr(well_controls_, current);
switch (well_controls_iget_type(well_controls_, current)) {
case BHP: {
well_state.bhp()[index_of_well_] = target;
const int top_segment_location = well_state.topSegmentLocation(index_of_well_);
well_state.segPress()[top_segment_location] = well_state.bhp()[index_of_well_];
// TODO: similar to the way below to handle THP
// we should not something related to thp here when there is thp constraint
break;
}
case THP: {
well_state.thp()[index_of_well_] = target;
const Opm::PhaseUsage& pu = phaseUsage();
std::vector rates(3, 0.0);
if (active()[ Water ]) {
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
}
if (active()[ Oil ]) {
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
}
if (active()[ Gas ]) {
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
}
const int table_id = well_controls_iget_vfp(well_controls_, current);
const double& thp = well_controls_iget_target(well_controls_, current);
const double& alq = well_controls_iget_alq(well_controls_, current);
// TODO: implement calculateBhpFromThp function
// well_state.bhp()[index_of_well_] = calculateBhpFromThp(rates, current);
// also the top segment pressure
/* const int top_segment_location = well_state.topSegmentLocation(index_of_well_);
well_state.segPress()[top_segment_location] = well_state.bhp()[index_of_well_]; */
break;
}
case RESERVOIR_RATE: // intentional fall-through
case SURFACE_RATE:
// for the update of the rates, after we update the well rates, we can try to scale
// the segment rates and perforation rates with the same factor
// or the other way, we can use the same approach like the initialization of the well state,
// we devide the well rates to update the perforation rates, then we update the segment rates based
// on the perforation rates.
// the second way is safer, since if the well control is changed, the first way will not guarantee the consistence
// of between the segment rates and peforation rates
// checking the number of the phases under control
int numPhasesWithTargetsUnderThisControl = 0;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
numPhasesWithTargetsUnderThisControl += 1;
}
}
assert(numPhasesWithTargetsUnderThisControl > 0);
if (well_type_ == INJECTOR) {
// assign target value as initial guess for injectors
// only handles single phase control at the moment
assert(numPhasesWithTargetsUnderThisControl == 1);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target / distr[phase];
} else {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = 0.;
}
}
} else if (well_type_ == PRODUCER) {
// update the rates of phases under control based on the target,
// and also update rates of phases not under control to keep the rate ratio,
// assuming the mobility ratio does not change for the production wells
double original_rates_under_phase_control = 0.0;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
original_rates_under_phase_control += well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] * distr[phase];
}
}
if (original_rates_under_phase_control != 0.0 ) {
double scaling_factor = target / original_rates_under_phase_control;
for (int phase = 0; phase < number_of_phases_; ++phase) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] *= scaling_factor;
}
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
// separating targets equally between phases under control
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided / distr[phase];
} else {
// this only happens for SURFACE_RATE control
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided;
}
}
}
}
// update the perforation rates and then segment rates
// TODO: it is something different from the StandardWell. In StandardWell, we do not update the perforation rates
// when we update the well rates to the target rates. Here, we update the perforation rates so that we can update the
// segment rates. This will make the calculation of the explicit quantities different, which relies on the perforation rates
// from the last time step. Maybe the better way to do this is to scale the perforation rates based on the well rates
// update, so that the compositon inside the wellbore will be preserved.
//
//
// Or we might just update the segment rates directly without changing the perforation rates?
//
// Or we check our old way of the old MultisegmentWells implementation.
{
for (int phase = 0; phase < number_of_phases_; ++phase) {
const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_;
for (int perf = 0; perf < number_of_perforations_; ++perf) {
well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate;
}
}
const std::vector perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_,
well_state.perfPhaseRates().begin() + number_of_phases_ * (first_perf_ + number_of_perforations_) );
std::vector segment_rates;
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_,
0 /* top segment */, segment_rates);
const int top_segment_location = well_state.topSegmentLocation(index_of_well_);
std::copy(segment_rates.begin(), segment_rates.end(),
well_state.segRates().begin() + number_of_phases_ * top_segment_location );
// we need to check the top segment rates should be same with the well rates
}
break;
} // end of switch
updatePrimaryVariables(well_state);
}
template
typename MultisegmentWell::ConvergenceReport
MultisegmentWell::
getWellConvergence(Simulator& ebosSimulator,
const std::vector& B_avg,
const ModelParameters& param) const
{
// assert((int(B_avg.size()) == numComponents()) || has_polymer);
assert( (int(B_avg.size()) == numComponents()) );
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector> residual(numberOfSegments(), std::vector(numWellEq, 0.0));
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]);
}
}
std::vector maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int seg = 0; seg < numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < numComponents()) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * residual[seg][eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.nan_residual_found = true;
const auto& phase_name = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(eq_idx));
const typename ConvergenceReport::ProblemWell problem_well = {name(), phase_name};
report.nan_residual_wells.push_back(problem_well);
} else if (flux_residual > param.max_residual_allowed_) {
report.too_large_residual_found = true;
const auto& phase_name = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(eq_idx));
const typename ConvergenceReport::ProblemWell problem_well = {name(), phase_name};
report.nan_residual_wells.push_back(problem_well);
} else { // it is a normal residual
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
}
} else { // pressure equation
const double pressure_residal = residual[seg][eq_idx];
const std::string eq_name("Pressure");
if (std::isnan(pressure_residal)) {
report.nan_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
report.nan_residual_wells.push_back(problem_well);
} else if (std::isinf(pressure_residal)) {
report.too_large_residual_found = true;
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
report.nan_residual_wells.push_back(problem_well);
} else { // it is a normal residual
if (pressure_residal > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residal;
}
}
}
}
}
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
// check convergence for flux residuals
for ( int comp_idx = 0; comp_idx < numComponents(); ++comp_idx)
{
// report.converged = report.converged && (maximum_residual[comp_idx] < param.tolerance_wells_ * 10.);
report.converged = report.converged && (maximum_residual[comp_idx] < param.tolerance_wells_);
}
// TODO: it is not good to use a hard-coded value.
report.converged = report.converged && (maximum_residual[SPres] < 100.0);
} else { // abnormal values found and no need to check the convergence
report.converged = false;
}
return report;
}
template
void
MultisegmentWell::
apply(const BVector& x, BVector& Ax) const
{
assert( Bx_.size() == duneB_.N() );
// Bx_ = duneB_ * x
duneB_.mv(x, Bx_);
// invDBx = duneD^-1 * Bx_
BVectorWell invDBx = invDX(duneD_, Bx_);
// Ax = Ax - duneC_^T * invDBx
duneC_.mmtv(invDBx,Ax);
}
template
void
MultisegmentWell::
apply(BVector& r) const
{
// invDrw_ = duneD^-1 * resWell_
BVectorWell invDrw = invDX(duneD_, resWell_);
// r = r - duneC_^T * invDrw
duneC_.mmtv(invDrw, r);
}
template
void
MultisegmentWell::
recoverWellSolutionAndUpdateWellState(const BVector& x,
const ModelParameters& param,
WellState& well_state) const
{
BVectorWell xw(1);
recoverSolutionWell(x, xw);
updateWellState(xw, param, well_state);
}
template
void
MultisegmentWell::
computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector& well_potentials)
{
// TODO: to be implemented later
}
template
void
MultisegmentWell::
updatePrimaryVariables(const WellState& well_state) const
{
// TODO: not tested yet.
// TODO: not handling solvent or polymer for now.
// TODO: to test using rate conversion coefficients to see if it will be better than
// this default one
std::vector g = {1.0, 1.0, 0.01};
if (well_controls_get_current_type(well_controls_) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
g[phase] = distr[phase];
}
}
// the location of the top segment in the WellState
const int top_segment_location = well_state.topSegmentLocation(index_of_well_);
const std::vector& segment_rates = well_state.segRates();
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// calculate the total rate for each segment
double total_seg_rate = 0.0;
const int seg_location = top_segment_location + seg;
// the segment pressure
primary_variables_[seg][SPres] = well_state.segPress()[seg_location];
// TODO: under what kind of circustances, the following will be wrong?
// the definition of g makes the gas phase is always the last phase
for (int p = 0; p < number_of_phases_; p++) {
total_seg_rate += g[p] * segment_rates[number_of_phases_ * seg_location + p];
}
primary_variables_[seg][GTotal] = total_seg_rate;
if (std::abs(total_seg_rate) > 0.) {
if (active()[Water]) {
primary_variables_[seg][WFrac] = g[Water] * segment_rates[number_of_phases_ * seg_location + Water] / total_seg_rate;
}
if (active()[Gas]) {
primary_variables_[seg][GFrac] = g[Gas] * segment_rates[number_of_phases_ * seg_location + Gas] / total_seg_rate;
}
} else { // total_seg_rate == 0
if (well_type_ == INJECTOR) {
// only single phase injection handled
const double* distr = well_controls_get_current_distr(well_controls_);
if (active()[Water]) {
if (distr[Water] > 0.0) {
primary_variables_[seg][WFrac] = 1.0;
} else {
primary_variables_[seg][WFrac] = 0.0;
}
}
if (active()[Gas]) {
if (distr[Gas] > 0.0) {
// TODO: not handling solvent here yet
primary_variables_[seg][GFrac] = 1.0;
} else {
primary_variables_[seg][GFrac] = 0.0;
}
}
} else if (well_type_ == PRODUCER) { // producers
if (active()[Water]) {
primary_variables_[seg][WFrac] = 1.0 / number_of_phases_;
}
if (active()[Gas]) {
primary_variables_[seg][GFrac] = 1.0 / number_of_phases_;
}
}
}
}
}
template
void
MultisegmentWell::
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
{
BVectorWell resWell = resWell_;
// resWell = resWell - B * x
duneB_.mmv(x, resWell);
// xw = D^-1 * resWell
xw = invDX(duneD_, resWell);
}
template
void
MultisegmentWell::
solveEqAndUpdateWellState(const ModelParameters& param,
WellState& well_state)
{
// We assemble the well equations, then we check the convergence,
// which is why we do not put the assembleWellEq here.
const BVectorWell dx_well = invDX(duneD_, resWell_);
updateWellState(dx_well, param, well_state);
}
template
void
MultisegmentWell::
computePerfCellPressDiffs(const Simulator& ebosSimulator)
{
// TODO: will implement later
}
template
void
MultisegmentWell::
computeInitialComposition()
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// TODO: probably it should be numWellEq -1 more accurately,
// while by meaning it should be num_comp
for (int comp_idx = 0; comp_idx < numComponents(); ++comp_idx) {
segment_comp_initial_[seg][comp_idx] = surfaceVolumeFraction(seg, comp_idx).value();
}
}
}
template
void
MultisegmentWell::
updateWellState(const BVectorWell& dwells,
const BlackoilModelParameters& param,
WellState& well_state) const
{
// I guess the following can also be applied to the segmnet pressure
// maybe better to give it a different name
const double dBHPLimit = param.dbhp_max_rel_;
const double dFLimit = param.dwell_fraction_max_;
const std::vector > old_primary_variables = primary_variables_;
for (int seg = 0; seg < numberOfSegments(); ++seg) {
if (active()[ Water ]) {
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]), dFLimit);
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
}
if (active()[ Gas ]) {
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]), dFLimit);
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
}
// handling the overshooting or undershooting of the fractions
processFractions(seg);
// update the segment pressure
{
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
const double current_pressure = old_primary_variables[seg][SPres];
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]), dBHPLimit * current_pressure);
primary_variables_[seg][SPres] = old_primary_variables[seg][SPres] - dx_limited;
}
// update the total rate // TODO: should we have a limitation of the total rate change?
{
primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - dwells[seg][GTotal];
}
// TODO: not handling solvent related for now
}
updateWellStateFromPrimaryVariables(well_state);
}
template
void
MultisegmentWell::
calculateExplicitQuantities(const Simulator& ebosSimulator,
const WellState& /* well_state */)
{
computePerfCellPressDiffs(ebosSimulator);
computeInitialComposition();
}
template
const SegmentSet&
MultisegmentWell::
segmentSet() const
{
return well_ecl_->getSegmentSet(current_step_);
}
template
int
MultisegmentWell::
numberOfSegments() const
{
return segmentSet().numberSegment();
}
template
int
MultisegmentWell::
numberOfPerforations() const
{
return segmentSet().number_of_perforations_;
}
template
WellSegment::CompPressureDropEnum
MultisegmentWell::
compPressureDrop() const
{
return segmentSet().compPressureDrop();
}
template
WellSegment::MultiPhaseModelEnum
MultisegmentWell::
multiphaseModel() const
{
return segmentSet().multiPhaseModel();
}
template
int
MultisegmentWell::
numberToLocation(const int segment_number) const
{
return segmentSet().numberToLocation(segment_number);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFraction(const int seg, const int comp_idx) const
{
if (comp_idx == Water) {
return primary_variables_evaluation_[seg][WFrac];
}
if (comp_idx == Gas) {
return primary_variables_evaluation_[seg][GFrac];
}
// TODO: not handling solvent for now
// if (has_solvent && compIdx == contiSolventEqIdx) {
// return primary_variables_evaluation_[seg][SFrac];
// }
// Oil fraction
EvalWell oil_fraction = 1.0;
if (active()[Water]) {
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
}
if (active()[Gas]) {
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
}
/* if (has_solvent) {
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
} */
return oil_fraction;
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
volumeFractionScaled(const int seg, const int comp_idx) const
{
// For reservoir rate control, the distr in well control is used for the
// rate conversion coefficients. For the injection well, only the distr of the injection
// phase is not zero.
if (well_controls_get_current_type(well_controls_) == RESERVOIR_RATE) {
// TODO: not handling solvent for now
/* if (has_solvent && comp_idx == contiSolventEqIdx) {
return wellVolumeFraction(comp_idx);
} */
const double* distr = well_controls_get_current_distr(well_controls_);
assert(comp_idx < 3);
if (distr[comp_idx] > 0.) {
return volumeFraction(seg, comp_idx) / distr[comp_idx];
} else {
// TODO: not sure why return EvalWell(0.) causing problem here
// Probably due to the wrong Jacobians.
return volumeFraction(seg, comp_idx);
}
}
std::vector g = {1, 1, 0.01};
return volumeFraction(seg, comp_idx) / g[comp_idx];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
surfaceVolumeFraction(const int seg, const int comp_idx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
const int num_comp = numComponents();
for (int idx = 0; idx < num_comp; ++idx) {
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
}
template
void
MultisegmentWell::
computePerfRate(const IntensiveQuantities& int_quants,
const std::vector& mob_perfcells,
const int seg,
const double well_index,
const EvalWell& segment_pressure,
const bool& allow_cf,
std::vector& cq_s) const
{
const int num_comp = numComponents();
std::vector cmix_s(num_comp, 0.0);
// the composition of the components inside wellbore
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
const auto& fs = int_quants.fluidState();
const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
const EvalWell rs = extendEval(fs.Rs());
const EvalWell rv = extendEval(fs.Rv());
// not using number_of_phases_ because of solvent
std::vector b_perfcells(num_comp, 0.0);
for (int phase = 0; phase < number_of_phases_; ++phase) {
const int phase_idx_ebos = flowPhaseToEbosPhaseIdx(phase);
b_perfcells[phase] = extendEval(fs.invB(phase_idx_ebos));
}
// TODO: not handling solvent for now
// if (has_solvent) {
// b_perfcells[contiSolventEqIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
// }
// Pressure drawdown (also used to determine direction of flow)
// TODO: not considering the two pressure difference for now. Trying to finish the framework first.
const EvalWell drawdown = pressure_cell - segment_pressure;
const Opm::PhaseUsage& pu = phaseUsage();
// producing perforations
if ( drawdown > 0.0) {
// Do nothing is crossflow is not allowed
if (!allow_cf && well_type_ == INJECTOR) {
return;
}
// compute component volumetric rates at standard conditions
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
const EvalWell cq_p = - well_index * (mob_perfcells[comp_idx] * drawdown);
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
}
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
const EvalWell cq_s_oil = cq_s[oilpos];
const EvalWell cq_s_gas = cq_s[gaspos];
cq_s[gaspos] += rs * cq_s_oil;
cq_s[oilpos] += rv * cq_s_gas;
}
} else { // injecting perforations
// Do nothing if crossflow is not allowed
if (!allow_cf && well_type_ == PRODUCER) {
return;
}
// for injecting perforations, we use total mobility
EvalWell total_mob = mob_perfcells[0];
for (int comp_idx = 1; comp_idx < num_comp; ++comp_idx) {
total_mob += mob_perfcells[comp_idx];
}
// injection perforations total volume rates
const EvalWell cqt_i = - well_index * (total_mob * drawdown);
// compute volume ratio between connection and at standard conditions
EvalWell volume_ratio = 0.0;
if (active()[Water]) {
const int watpos = pu.phase_pos[Water];
volume_ratio += cmix_s[watpos] / b_perfcells[watpos];
}
// TODO: not handling
// if (has_solvent) {
// volumeRatio += cmix_s[contiSolventEqIdx] / b_perfcells_dense[contiSolventEqIdx];
// }
if (active()[Oil] && active()[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
// Incorporate RS/RV factors if both oil and gas active
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
// basically, for injecting perforations, the wellbore is the upstreaming side.
const EvalWell d = 1.0 - rv * rs;
if (d.value() == 0.0) {
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << name() << " during flux calcuation"
<< " with rs " << rs << " and rv " << rv);
}
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
volume_ratio += tmp_oil / b_perfcells[oilpos];
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
volume_ratio += tmp_gas / b_perfcells[gaspos];
} else { // not having gas and oil at the same time
if (active()[Oil]) {
const int oilpos = pu.phase_pos[Oil];
volume_ratio += cmix_s[oilpos] / b_perfcells[oilpos];
}
if (active()[Gas]) {
const int gaspos = pu.phase_pos[Gas];
volume_ratio += cmix_s[gaspos] / b_perfcells[gaspos];
}
}
// injecting connections total volumerates at standard conditions
EvalWell cqt_is = cqt_i / volume_ratio;
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is; // // TODO: checking there * b_perfcells[phase];
}
} // end for injection perforations
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template
void
MultisegmentWell::
computeSegmentFluidProperties(const Simulator& ebosSimulator)
{
// TODO: the phase location is so confusing, double check to make sure they are right
// do I need the gaspos, oilpos here?
// compute the segment density first
// TODO: the new understanding is that it might not need to know the grid block of the segments
// It is a try to calculate the fluid properties without assuming the segment is associated with
// any grid blocks
// get the temperature for later use. It is only useful when we are not handling
// thermal related simulation
// basically, it is a single value for all the segments
EvalWell temperature;
// not sure how to handle the pvt region related to segment
// for the current approach, we use the pvt region of the first perforated cell
// although there are some text indicating using the pvt region of the lowest
// perforated cell
// TODO: later to investigate how to handle the pvt region
int pvt_region_index;
{
// using the first perforated cell
const int cell_idx = well_cells_[0];
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& fs = intQuants.fluidState();
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
pvt_region_index = fs.pvtRegionIndex();
}
const int num_comp = numComponents();
const Opm::PhaseUsage& pu = phaseUsage();
for (int seg = 0; seg < numberOfSegments(); ++seg) {
// the compostion of the components inside wellbore under surface condition
std::vector mix_s(num_comp, 0.0);
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
std::vector b(num_comp, 0.0);
const EvalWell seg_pressure = getSegmentPressure(seg);
if (pu.phase_used[BlackoilPhases::Aqua]) {
b[pu.phase_pos[BlackoilPhases::Aqua]] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
EvalWell rv(0.0);
// gas phase
if (pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour];
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid];
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[oilpos] > 0.0) {
if (mix_s[gaspos] > 0.0) {
rv = mix_s[oilpos] / mix_s[gaspos];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gaspos] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
} else { // no oil exists
b[gaspos] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gaspos] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid];
if (pu.phase_used[BlackoilPhases::Liquid]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour];
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[gaspos] > 0.0) {
if (mix_s[oilpos] > 0.0) {
rs = mix_s[gaspos] / mix_s[oilpos];
}
if (rs > rsmax) {
rs = rsmax;
}
b[oilpos] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
} else { // no oil exists
b[oilpos] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[oilpos] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
}
}
std::vector mix(mix_s);
if (pu.phase_used[BlackoilPhases::Liquid] && pu.phase_used[BlackoilPhases::Vapour]) {
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour];
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid];
if (rs != 0.0) { // rs > 0.0?
mix[gaspos] = (mix_s[gaspos] - mix_s[oilpos] * rs) / (1. - rs * rv);
}
if (rv != 0.0) { // rv > 0.0?
mix[oilpos] = (mix_s[oilpos] - mix_s[gaspos] * rv) / (1. - rs * rv);
}
}
EvalWell volrat(0.0);
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
volrat += mix[comp_idx] / b[comp_idx];
}
std::vector surf_dens(num_comp);
// Surface density.
// not using num_comp here is because solvent can be component
for (int phase = 0; phase < pu.num_phases; ++phase) {
surf_dens[phase] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx(phase), pvt_region_index );
}
// TODO: not handling solvent for now.
EvalWell density(0.0);
for (int comp_idx = 0; comp_idx < num_comp; ++comp_idx) {
density += surf_dens[comp_idx] * mix_s[comp_idx];
}
segment_densities_[seg] = density / volrat;
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentPressure(const int seg) const
{
return primary_variables_evaluation_[seg][SPres];
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentRate(const int seg,
const int comp_idx) const
{
return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx);
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getSegmentGTotal(const int seg) const
{
return primary_variables_evaluation_[seg][GTotal];
}
template
void
MultisegmentWell::
getMobility(const Simulator& ebosSimulator,
const int perf,
std::vector& mob) const
{
// TODO: most of this function, if not the whole function, can be moved to the base class
const int np = number_of_phases_;
const int cell_idx = well_cells_[perf];
assert (int(mob.size()) == numComponents());
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
// either use mobility of the perforation cell or calcualte its own
// based on passing the saturation table index
const int satid = saturation_table_number_[perf] - 1;
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
}
// if (has_solvent) {
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
// }
} else {
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
// reset the satnumvalue back to original
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
// compute the mobility
for (int phase = 0; phase < np; ++phase) {
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
}
// this may not work if viscosity and relperms has been modified?
// if (has_solvent) {
// OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
// }
}
// modify the water mobility if polymer is present
// if (has_polymer) {
// assume fully mixture for wells.
// EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
// if (well_type_ == INJECTOR) {
// const auto& viscosityMultiplier = PolymerModule::plyviscViscosityMultiplierTable(intQuants.pvtRegionIndex());
// mob[ Water ] /= (extendEval(intQuants.waterViscosityCorrection()) * viscosityMultiplier.eval(polymerConcentration, /*extrapolate=*/true) );
// }
// TODO: not sure if we should handle shear calculation with MS well
// }
}
template
void
MultisegmentWell::
assembleControlEq() const
{
EvalWell control_eq(0.0);
switch (well_controls_get_current_type(well_controls_)) {
case THP: // not handling this one for now
{
OPM_THROW(std::runtime_error, "Not handling THP control for Multisegment wells for now");
}
case BHP:
{
const double target_bhp = well_controls_get_current_target(well_controls_);
control_eq = getSegmentPressure(0) - target_bhp;
break;
}
case SURFACE_RATE:
{
// finding if it is a single phase control or combined phase control
int number_phases_under_control = 0;
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.0) {
++number_phases_under_control;
}
}
assert(number_phases_under_control > 0);
const std::vector g = {1.0, 1.0, 0.01};
const double target_rate = well_controls_get_current_target(well_controls_);
// TODO: the two situations below should be able to be merged to be handled as one situation
if (number_phases_under_control == 1) { // single phase control
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) { // under the control of this phase
control_eq = getSegmentGTotal(0) * volumeFraction(0, phase) - g[phase] * target_rate;
break;
}
}
} else { // multiphase rate control
EvalWell rate_for_control(0.0);
const EvalWell G_total = getSegmentGTotal(0);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
rate_for_control += G_total * volumeFractionScaled(0, phase);
}
}
// TODO: maybe the following equation can be scaled a little bit for gas phase
control_eq = rate_for_control - target_rate;
}
break;
}
case RESERVOIR_RATE:
{
EvalWell rate_for_control(0.0); // reservoir rate
const double* distr = well_controls_get_current_distr(well_controls_);
for (int phase = 0; phase < number_of_phases_; ++phase) {
if (distr[phase] > 0.) {
rate_for_control += getSegmentGTotal(0) * volumeFraction(0, phase);
}
}
const double target_rate = well_controls_get_current_target(well_controls_);
control_eq = rate_for_control - target_rate;
break;
}
default:
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
}
// using control_eq to update the matrix and residuals
resWell_[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq);
}
}
template
void
MultisegmentWell::
assemblePressureEq(const int seg) const
{
// TODO: currently, we only handle the hydrostatic pressure difference.
// We need to add the friction pressure loss and also the acceleration pressure loss
// with the acceleration pressure loss, there will be inlets flow rates (maybe alos the oulet flow)
// not sure whether to handle them implicitly or explicitly
// TODO: we can try to handle them explicitly first, if it does not work, we can handle them
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
pressure_equation -= getHydroPressureLoss(seg);
resWell_[seg][SPres] = pressure_equation.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
}
// contribution from the outlet segment
const int outlet_segment_location = numberToLocation(segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_location);
resWell_[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
duneD_[seg][outlet_segment_location][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
}
}
template
typename MultisegmentWell::EvalWell
MultisegmentWell::
getHydroPressureLoss(const int seg) const
{
return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg];
}
template
void
MultisegmentWell::
processFractions(const int seg) const
{
std::vector fractions(number_of_phases_, 0.0);
assert( active()[Oil] );
fractions[Oil] = 1.0;
if ( active()[Water] ) {
fractions[Water] = primary_variables_[seg][WFrac];
fractions[Oil] -= fractions[Water];
}
if ( active()[Gas] ) {
fractions[Gas] = primary_variables_[seg][GFrac];
fractions[Oil] -= fractions[Gas];
}
// TODO: not handling solvent related
if (fractions[Water] < 0.0) {
if ( active()[Gas] ) {
fractions[Gas] /= (1.0 - fractions[Water]);
}
fractions[Oil] /= (1.0 - fractions[Water]);
fractions[Water] = 0.0;
}
if (fractions[Gas] < 0.0) {
if ( active()[Water] ) {
fractions[Water] /= (1.0 - fractions[Gas]);
}
fractions[Oil] /= (1.0 - fractions[Gas]);
fractions[Gas] = 0.0;
}
if (fractions[Oil] < 0.0) {
if ( active()[Water] ) {
fractions[Water] /= (1.0 - fractions[Oil]);
}
if ( active()[Gas] ) {
fractions[Gas] /= (1.0 - fractions[Oil]);
}
fractions[Oil] = 0.0;
}
if ( active()[Water] ) {
primary_variables_[seg][WFrac] = fractions[Water];
}
if ( active()[Gas] ) {
primary_variables_[seg][GFrac] = fractions[Gas];
}
}
template
void
MultisegmentWell::
updateWellStateFromPrimaryVariables(WellState& well_state) const
{
for (int seg = 0; seg < numberOfSegments(); ++seg) {
std::vector fractions(number_of_phases_, 0.0);
assert( active()[Oil] );
fractions[Oil] = 1.0;
if ( active()[Water] ) {
fractions[Water] = primary_variables_[seg][WFrac];
fractions[Oil] -= fractions[Water];
}
if ( active()[Gas] ) {
fractions[Gas] = primary_variables_[seg][GFrac];
fractions[Oil] -= fractions[Gas];
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
if (well_controls_get_current_type(well_controls_) == RESERVOIR_RATE) {
const double* distr = well_controls_get_current_distr(well_controls_);
for (int p = 0; p < number_of_phases_; ++p) {
if (distr[p] > 0.) { // for injection wells, thre is only one non-zero distr value
fractions[p] /= distr[p];
} else {
// this only happens to injection well so far
fractions[p] = 0.;
}
}
} else {
const std::vector g = {1., 1., 0.01};
for (int p = 0; p < number_of_phases_; ++p) {
fractions[p] /= g[p];
}
}
// calculate the phase rates based on the primary variables
const double g_total = primary_variables_[seg][GTotal];
const int top_segment_location = well_state.topSegmentLocation(index_of_well_);
for (int p = 0; p < number_of_phases_; ++p) {
const double phase_rate = g_total * fractions[p];
well_state.segRates()[(seg + top_segment_location) * number_of_phases_ + p] = phase_rate;
if (seg == 0) { // top segment
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate;
}
}
// update the segment pressure
well_state.segPress()[seg + top_segment_location] = primary_variables_[seg][SPres];
if (seg == 0) { // top segment
well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_location];
}
}
}
}