/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
// Helper structs and functions for the implementation.
namespace
{
struct WellData
{
well_type type;
control_type control;
double target;
double reference_bhp_depth;
surface_component injected_phase;
};
struct PerfData
{
int cell;
double well_index;
};
int prod_control_mode(const std::string& control)
{
const int num_prod_control_modes = 8;
static std::string prod_control_modes[num_prod_control_modes] =
{std::string("ORAT"), std::string("WRAT"), std::string("GRAT"),
std::string("LRAT"), std::string("RESV"), std::string("BHP"),
std::string("THP"), std::string("GRUP") };
int m = -1;
for (int i=0; i= 0) {
return m;
} else {
THROW("Unknown well control mode = " << control << " in input file");
}
}
int inje_control_mode(const std::string& control)
{
const int num_inje_control_modes = 5;
static std::string inje_control_modes[num_inje_control_modes] =
{std::string("RATE"), std::string("RESV"), std::string("BHP"),
std::string("THP"), std::string("GRUP") };
int m = -1;
for (int i=0; i= 0) {
return m;
} else {
THROW("Unknown well control mode = " << control << " in input file");
}
}
std::tr1::array getCubeDim(const UnstructuredGrid& grid, int cell)
{
using namespace std;
tr1::array cube;
int num_local_faces = grid.cell_facepos[cell + 1] - grid.cell_facepos[cell];
vector x(num_local_faces);
vector y(num_local_faces);
vector z(num_local_faces);
for (int lf=0; lf& cubical,
const double* cell_permeability,
const double skin_factor)
{
using namespace std;
// sse: Using the Peaceman model.
// NOTE: The formula is valid for cartesian grids, so the result can be a bit
// (in worst case: there is no upper bound for the error) off the mark.
const double permx = cell_permeability[0];
const double permy = cell_permeability[3*1 + 1];
double effective_perm = sqrt(permx*permy);
// sse: The formula for r_0 can be found on page 39 of
// "Well Models for Mimetic Finite Differerence Methods and Improved Representation
// of Wells in Multiscale Methods" by Ingeborg Skjelkvåle Ligaarden.
assert(permx > 0.0);
assert(permy > 0.0);
double kxoy = permx / permy;
double kyox = permy / permx;
double r0_denominator = pow(kyox, 0.25) + pow(kxoy, 0.25);
double r0_numerator = sqrt((sqrt(kyox)*cubical[0]*cubical[0]) +
(sqrt(kxoy)*cubical[1]*cubical[1]));
assert(r0_denominator > 0.0);
double r0 = 0.28 * r0_numerator / r0_denominator;
assert(radius > 0.0);
assert(r0 > 0.0);
if (r0 < radius) {
std::cout << "ERROR: Too big well radius detected.";
std::cout << "Specified well radius is " << radius
<< " while r0 is " << r0 << ".\n";
}
const long double two_pi = 6.2831853071795864769252867665590057683943387987502116419498;
double wi_denominator = log(r0 / radius) + skin_factor;
double wi_numerator = two_pi * cubical[2];
assert(wi_denominator > 0.0);
double wi = effective_perm * wi_numerator / wi_denominator;
assert(wi > 0.0);
return wi;
}
} // anonymous namespace
namespace Opm
{
/// Default constructor.
WellsManager::WellsManager()
: w_(0)
{
}
/// Construct wells from deck.
WellsManager::WellsManager(const Opm::EclipseGridParser& deck,
const UnstructuredGrid& grid,
const double* permeability)
: w_(0)
{
if (grid.dimensions != 3) {
THROW("We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional.");
}
// NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells.
std::vector keywords;
keywords.push_back("WELSPECS");
keywords.push_back("COMPDAT");
// keywords.push_back("WELTARG");
if (!deck.hasFields(keywords)) {
MESSAGE("Missing well keywords in deck, initializing no wells.");
return;
}
if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) {
THROW("Needed field is missing in file");
}
// These data structures will be filled in this constructor,
// then used to initialize the Wells struct.
std::vector well_names;
std::vector well_data;
std::vector > wellperf_data;
// Get WELSPECS data
const WELSPECS& welspecs = deck.getWELSPECS();
const int num_wells = welspecs.welspecs.size();
well_names.reserve(num_wells);
well_data.reserve(num_wells);
wellperf_data.resize(num_wells);
for (int w = 0; w < num_wells; ++w) {
well_names.push_back(welspecs.welspecs[w].name_);
WellData wd;
well_data.push_back(wd);
well_data.back().reference_bhp_depth = welspecs.welspecs[w].datum_depth_BHP_;
if (welspecs.welspecs[w].datum_depth_BHP_ < 0.0) {
// Set refdepth to a marker value, will be changed
// after getting perforation data to the centroid of
// the cell of the top well perforation.
well_data.back().reference_bhp_depth = -1e100;
}
}
// global_cell is a map from compressed cells to Cartesian grid cells.
// We must make the inverse lookup.
const int* global_cell = grid.global_cell;
const int* cpgdim = grid.cartdims;
std::map cartesian_to_compressed;
for (int i = 0; i < grid.number_of_cells; ++i) {
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
}
// Get COMPDAT data
const COMPDAT& compdat = deck.getCOMPDAT();
const int num_compdat = compdat.compdat.size();
for (int kw = 0; kw < num_compdat; ++kw) {
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = compdat.compdat[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
// Look for well with matching name.
bool found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { // equal
// We have a matching name.
int ix = compdat.compdat[kw].grid_ind_[0] - 1;
int jy = compdat.compdat[kw].grid_ind_[1] - 1;
int kz1 = compdat.compdat[kw].grid_ind_[2] - 1;
int kz2 = compdat.compdat[kw].grid_ind_[3] - 1;
for (int kz = kz1; kz <= kz2; ++kz) {
int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz);
std::map::const_iterator cgit =
cartesian_to_compressed.find(cart_grid_indx);
if (cgit == cartesian_to_compressed.end()) {
THROW("Cell with i,j,k indices " << ix << ' ' << jy << ' '
<< kz << " not found in grid!");
}
int cell = cgit->second;
PerfData pd;
pd.cell = cell;
if (compdat.compdat[kw].connect_trans_fac_ > 0.0) {
pd.well_index = compdat.compdat[kw].connect_trans_fac_;
} else {
double radius = 0.5*compdat.compdat[kw].diameter_;
if (radius <= 0.0) {
radius = 0.5*unit::feet;
MESSAGE("**** Warning: Well bore internal radius set to " << radius);
}
std::tr1::array cubical = getCubeDim(grid, cell);
const double* cell_perm = &permeability[grid.dimensions*grid.dimensions*cell];
pd.well_index = computeWellIndex(radius, cubical, cell_perm,
compdat.compdat[kw].skin_factor_);
}
wellperf_data[wix].push_back(pd);
}
found = true;
break;
}
}
if (!found) {
THROW("Undefined well name: " << compdat.compdat[kw].well_
<< " in COMPDAT");
}
}
// Set up reference depths that were defaulted. Count perfs.
int num_perfs = 0;
for (int w = 0; w < num_wells; ++w) {
num_perfs += wellperf_data[w].size();
if (well_data[w].reference_bhp_depth == -1e100) {
// It was defaulted. Set reference depth to minimum perforation depth.
double min_depth = 1e100;
int num_wperfs = wellperf_data[w].size();
for (int perf = 0; perf < num_wperfs; ++perf) {
double depth = grid.cell_centroids[3*wellperf_data[w][perf].cell + 2];
min_depth = std::min(min_depth, depth);
}
well_data[w].reference_bhp_depth = min_depth;
}
}
// Get WCONINJE data
if (deck.hasField("WCONINJE")) {
const WCONINJE& wconinjes = deck.getWCONINJE();
const int num_wconinjes = wconinjes.wconinje.size();
for (int kw = 0; kw < num_wconinjes; ++kw) {
// Extract well name, or the part of the well name that
// comes before the '*'.
std::string name = wconinjes.wconinje[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
well_data[wix].type = INJECTOR;
int m = inje_control_mode(wconinjes.wconinje[kw].control_mode_);
switch(m) {
case 0: // RATE
well_data[wix].control = RATE;
well_data[wix].target = wconinjes.wconinje[kw].surface_flow_max_rate_;
break;
case 1: // RESV
well_data[wix].control = RATE;
well_data[wix].target = wconinjes.wconinje[kw].fluid_volume_max_rate_;
break;
case 2: // BHP
well_data[wix].control = BHP;
well_data[wix].target = wconinjes.wconinje[kw].BHP_limit_;
break;
case 3: // THP
well_data[wix].control = BHP;
well_data[wix].target = wconinjes.wconinje[kw].THP_limit_;
break;
default:
THROW("Unknown well control mode; WCONIJE = "
<< wconinjes.wconinje[kw].control_mode_
<< " in input file");
}
if (wconinjes.wconinje[kw].injector_type_ == "WATER") {
well_data[wix].injected_phase = WATER;
} else if (wconinjes.wconinje[kw].injector_type_ == "OIL") {
well_data[wix].injected_phase = OIL;
} else if (wconinjes.wconinje[kw].injector_type_ == "GAS") {
well_data[wix].injected_phase = GAS;
} else {
THROW("Error in injector specification, found no known fluid type.");
}
}
}
if (!well_found) {
THROW("Undefined well name: " << wconinjes.wconinje[kw].well_
<< " in WCONINJE");
}
}
}
// Get WCONPROD data
if (deck.hasField("WCONPROD")) {
const WCONPROD& wconprods = deck.getWCONPROD();
const int num_wconprods = wconprods.wconprod.size();
for (int kw = 0; kw < num_wconprods; ++kw) {
std::string name = wconprods.wconprod[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
well_data[wix].type = PRODUCER;
int m = prod_control_mode(wconprods.wconprod[kw].control_mode_);
switch(m) {
case 0: // ORAT
well_data[wix].control = RATE;
well_data[wix].target = wconprods.wconprod[kw].oil_max_rate_;
break;
case 1: // WRAT
well_data[wix].control = RATE;
well_data[wix].target = wconprods.wconprod[kw].water_max_rate_;
break;
case 2: // GRAT
well_data[wix].control = RATE;
well_data[wix].target = wconprods.wconprod[kw].gas_max_rate_;
break;
case 3: // LRAT
well_data[wix].control = RATE;
well_data[wix].target = wconprods.wconprod[kw].liquid_max_rate_;
break;
case 4: // RESV
well_data[wix].control = RATE;
well_data[wix].target = wconprods.wconprod[kw].fluid_volume_max_rate_;
break;
case 5: // BHP
well_data[wix].control = BHP;
well_data[wix].target = wconprods.wconprod[kw].BHP_limit_;
break;
case 6: // THP
well_data[wix].control = BHP;
well_data[wix].target = wconprods.wconprod[kw].THP_limit_;
break;
default:
THROW("Unknown well control mode; WCONPROD = "
<< wconprods.wconprod[kw].control_mode_
<< " in input file");
}
}
}
if (!well_found) {
THROW("Undefined well name: " << wconprods.wconprod[kw].well_
<< " in WCONPROD");
}
}
}
// Get WELTARG data
if (deck.hasField("WELTARG")) {
const WELTARG& weltargs = deck.getWELTARG();
const int num_weltargs = weltargs.weltarg.size();
for (int kw = 0; kw < num_weltargs; ++kw) {
std::string name = weltargs.weltarg[kw].well_;
std::string::size_type len = name.find('*');
if (len != std::string::npos) {
name = name.substr(0, len);
}
bool well_found = false;
for (int wix = 0; wix < num_wells; ++wix) {
if (well_names[wix].compare(0,len, name) == 0) { //equal
well_found = true;
well_data[wix].target = weltargs.weltarg[kw].new_value_;
break;
}
}
if (!well_found) {
THROW("Undefined well name: " << weltargs.weltarg[kw].well_
<< " in WELTARG");
}
}
}
// Debug output.
#define EXTRA_OUTPUT
#ifdef EXTRA_OUTPUT
std::cout << "\t WELL DATA" << std::endl;
for(int i = 0; i< num_wells; ++i) {
std::cout << i << ": " << well_data[i].type << " "
<< well_data[i].control << " " << well_data[i].target
<< std::endl;
}
std::cout << "\n\t PERF DATA" << std::endl;
for(int i=0; i< int(wellperf_data.size()); ++i) {
for(int j=0; j< int(wellperf_data[i].size()); ++j) {
std::cout << i << ": " << wellperf_data[i][j].cell << " "
<< wellperf_data[i][j].well_index << std::endl;
}
}
#endif
// Set up the Wells struct.
w_ = wells_create(num_wells, num_perfs);
if (!w_) {
THROW("Failed creating Wells struct.");
}
double fracs[3][3] = { { 1.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 } };
for (int w = 0; w < num_wells; ++w) {
int nperf = wellperf_data[w].size();
std::vector cells(nperf);
std::vector wi(nperf);
for (int perf = 0; perf < nperf; ++perf) {
cells[perf] = wellperf_data[w][perf].cell;
wi[perf] = wellperf_data[w][perf].well_index;
}
const double* zfrac = (well_data[w].type == INJECTOR) ? fracs[well_data[w].injected_phase] : 0;
int ok = wells_add(well_data[w].type, well_data[w].reference_bhp_depth, nperf,
zfrac, &cells[0], &wi[0], w_);
if (!ok) {
THROW("Failed to add a well.");
}
// We only append a single control at this point.
// TODO: Handle multiple controls.
ok = well_controls_append(well_data[w].control, well_data[w].target, w_->ctrls[w]);
if (!ok) {
THROW("Failed to add well controls.");
}
}
}
/// Destructor.
WellsManager::~WellsManager()
{
wells_destroy(w_);
}
/// Access the managed Wells.
/// The method is named similarly to c_str() in std::string,
/// to make it clear that we are returning a C-compatible struct.
const Wells* WellsManager::c_wells() const
{
return w_;
}
} // namespace Opm