// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * \copydoc Opm::EclOutputBlackOilModule */ #ifndef EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #define EWOMS_ECL_OUTPUT_BLACK_OIL_MODULE_HH #include "eclwriter.hh" #include #include #include #include #include #include #include #include #include #include #include BEGIN_PROPERTIES // create new type tag for the Ecl-output NEW_TYPE_TAG(EclOutputBlackOil); NEW_PROP_TAG(ForceDisableFluidInPlaceOutput); SET_BOOL_PROP(EclOutputBlackOil, ForceDisableFluidInPlaceOutput, false); END_PROPERTIES namespace Opm { // forward declaration template class EcfvDiscretization; /*! * \ingroup EclBlackOilSimulator * * \brief Output module for the results black oil model writing in * ECL binary format. */ template class EclOutputBlackOilModule { typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator; typedef typename GET_PROP_TYPE(TypeTag, Discretization) Discretization; typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar; typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation; typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView; typedef typename GridView::template Codim<0>::Entity Element; typedef typename GridView::template Codim<0>::Iterator ElementIterator; enum { numPhases = FluidSystem::numPhases }; enum { oilPhaseIdx = FluidSystem::oilPhaseIdx }; enum { gasPhaseIdx = FluidSystem::gasPhaseIdx }; enum { waterPhaseIdx = FluidSystem::waterPhaseIdx }; enum { gasCompIdx = FluidSystem::gasCompIdx }; enum { oilCompIdx = FluidSystem::oilCompIdx }; enum { enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy) }; typedef std::vector ScalarBuffer; struct FipDataType { enum FipId { WaterInPlace = 0, //WIP OilInPlace = 1, //OIP GasInPlace = 2, //GIP OilInPlaceInLiquidPhase = 3, //OIPL OilInPlaceInGasPhase = 4, //OIPG GasInPlaceInLiquidPhase = 5, //GIPL GasInPlaceInGasPhase = 6, //GIPG PoreVolume = 7, //PV }; static const int numFipValues = PoreVolume + 1 ; }; public: template EclOutputBlackOilModule(const Simulator& simulator, const CollectDataToIORankType& collectToIORank) : simulator_(simulator) { createLocalFipnum_(); // Summary output is for all steps const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); // Initialize block output for (const auto& node: summaryConfig) { if (node.type() == ECL_SMSPEC_BLOCK_VAR) { if (collectToIORank.isGlobalIdxOnThisRank(node.num() - 1)) { std::pair key = std::make_pair(node.keyword(), node.num()); blockData_[key] = 0.0; } } } forceDisableFipOutput_ = EWOMS_GET_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput); } /*! * \brief Register all run-time parameters for the Vtk output module. */ static void registerParameters() { EWOMS_REGISTER_PARAM(TypeTag, bool, ForceDisableFluidInPlaceOutput, "Do not print fluid-in-place values after each report step even if requested by the deck."); } /*! * \brief Allocate memory for the scalar fields we would like to * write to ECL output files */ void allocBuffers(unsigned bufferSize, unsigned reportStepNum, const bool substep, const bool log) { if (!std::is_same >::value) return; // Summary output is for all steps const Opm::SummaryConfig summaryConfig = simulator_.vanguard().summaryConfig(); // Only output RESTART_AUXILIARY asked for by the user. const Opm::RestartConfig& restartConfig = simulator_.vanguard().eclState().getRestartConfig(); std::map rstKeywords = restartConfig.getRestartKeywords(reportStepNum); for (auto& keyValue: rstKeywords) { keyValue.second = restartConfig.getKeyword(keyValue.first, reportStepNum); } outputFipRestart_ = false; computeFip_ = false; // Fluid in place for (int i = 0; i 0) { rstKeywords["FIP"] = 0; outputFipRestart_ = true; } fip_[i].resize(bufferSize, 0.0); computeFip_ = true; } else fip_[i].clear(); } if (!substep || summaryConfig.hasKeyword("FPR") || summaryConfig.hasKeyword("FPRP") || summaryConfig.hasKeyword("RPR")) { fip_[FipDataType::PoreVolume].resize(bufferSize, 0.0); hydrocarbonPoreVolume_.resize(bufferSize, 0.0); pressureTimesPoreVolume_.resize(bufferSize, 0.0); pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0); } else { hydrocarbonPoreVolume_.clear(); pressureTimesPoreVolume_.clear(); pressureTimesHydrocarbonVolume_.clear(); } // Well RFT data if (!substep) { const auto& schedule = simulator_.vanguard().schedule(); const auto& rft_config = schedule.rftConfig(); for (const auto& well: schedule.getWells2(reportStepNum)) { // don't bother with wells not on this process const auto& defunctWellNames = simulator_.vanguard().defunctWellNames(); if (defunctWellNames.find(well.name()) != defunctWellNames.end()) { continue; } if (!rft_config.active(reportStepNum)) continue; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k); oilConnectionPressures_.emplace(std::make_pair(index, 0.0)); waterConnectionSaturations_.emplace(std::make_pair(index, 0.0)); gasConnectionSaturations_.emplace(std::make_pair(index, 0.0)); } } } // always allocate memory for temperature temperature_.resize(bufferSize, 0.0); // Only provide restart on restart steps if (!restartConfig.getWriteRestartFile(reportStepNum, log) || substep) return; // always output saturation of active phases for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; saturation_[phaseIdx].resize(bufferSize, 0.0); } // and oil pressure oilPressure_.resize(bufferSize, 0.0); if (FluidSystem::enableDissolvedGas()) rs_.resize(bufferSize, 0.0); if (FluidSystem::enableVaporizedOil()) rv_.resize(bufferSize, 0.0); if (GET_PROP_VALUE(TypeTag, EnableSolvent)) sSol_.resize(bufferSize, 0.0); if (GET_PROP_VALUE(TypeTag, EnablePolymer)) cPolymer_.resize(bufferSize, 0.0); if (GET_PROP_VALUE(TypeTag, EnableFoam)) cFoam_.resize(bufferSize, 0.0); if (simulator_.problem().vapparsActive()) soMax_.resize(bufferSize, 0.0); if (simulator_.problem().materialLawManager()->enableHysteresis()) { pcSwMdcOw_.resize(bufferSize, 0.0); krnSwMdcOw_.resize(bufferSize, 0.0); pcSwMdcGo_.resize(bufferSize, 0.0); krnSwMdcGo_.resize(bufferSize, 0.0); } if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT")) ppcw_.resize(bufferSize, 0.0); if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) { rstKeywords["RSSAT"] = 0; gasDissolutionFactor_.resize(bufferSize, 0.0); } if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) { rstKeywords["RVSAT"] = 0; oilVaporizationFactor_.resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) { rstKeywords["BW"] = 0; invB_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) { rstKeywords["BO"] = 0; invB_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) { rstKeywords["BG"] = 0; invB_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["DEN"] > 0) { rstKeywords["DEN"] = 0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; density_[phaseIdx].resize(bufferSize, 0.0); } } const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0); const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0); const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0); rstKeywords["VISC"] = 0; if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) { rstKeywords["VWAT"] = 0; viscosity_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) { rstKeywords["VOIL"] = 0; viscosity_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) { rstKeywords["VGAS"] = 0; viscosity_[gasPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) { rstKeywords["KRW"] = 0; relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) { rstKeywords["KRO"] = 0; relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) { rstKeywords["KRG"] = 0; relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0); } if (rstKeywords["PBPD"] > 0) { rstKeywords["PBPD"] = 0; bubblePointPressure_.resize(bufferSize, 0.0); dewPointPressure_.resize(bufferSize, 0.0); } // tracers const int numTracers = simulator_.problem().tracerModel().numTracers(); if (numTracers > 0){ tracerConcentrations_.resize(numTracers); for (int tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx) { tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0); } } // ROCKC if (rstKeywords["ROCKC"] > 0) { rstKeywords["ROCKC"] = 0; rockCompPorvMultiplier_.resize(bufferSize, 0.0); rockCompTransMultiplier_.resize(bufferSize, 0.0); swMax_.resize(bufferSize, 0.0); minimumOilPressure_.resize(bufferSize, 0.0); overburdenPressure_.resize(bufferSize, 0.0); } //Warn for any unhandled keyword if (log) { for (auto& keyValue: rstKeywords) { if (keyValue.second > 0) { std::string logstring = "Keyword '"; logstring.append(keyValue.first); logstring.append("' is unhandled for output to file."); Opm::OpmLog::warning("Unhandled output keyword", logstring); } } } failedCellsPb_.clear(); failedCellsPd_.clear(); // Not supported in flow legacy if (false) saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0); if (false) oilSaturationPressure_.resize(bufferSize, 0.0); } /*! * \brief Modify the internal buffers according to the intensive quanties relevant * for an element */ void processElement(const ElementContext& elemCtx) { if (!std::is_same >::value) return; const auto& problem = elemCtx.simulator().problem(); for (unsigned dofIdx = 0; dofIdx < elemCtx.numPrimaryDof(/*timeIdx=*/0); ++dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); typedef typename std::remove_const::type>::type FluidState; unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); unsigned pvtRegionIdx = elemCtx.primaryVars(dofIdx, /*timeIdx=*/0).pvtRegionIndex(); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (saturation_[phaseIdx].size() == 0) continue; saturation_[phaseIdx][globalDofIdx] = Opm::getValue(fs.saturation(phaseIdx)); Opm::Valgrind::CheckDefined(saturation_[phaseIdx][globalDofIdx]); } if (oilPressure_.size() > 0) { oilPressure_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)); Opm::Valgrind::CheckDefined(oilPressure_[globalDofIdx]); } if (enableEnergy) { temperature_[globalDofIdx] = Opm::getValue(fs.temperature(oilPhaseIdx)); Opm::Valgrind::CheckDefined(temperature_[globalDofIdx]); } if (gasDissolutionFactor_.size() > 0) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); gasDissolutionFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, oilPhaseIdx, pvtRegionIdx, SoMax); Opm::Valgrind::CheckDefined(gasDissolutionFactor_[globalDofIdx]); } if (oilVaporizationFactor_.size() > 0) { Scalar SoMax = elemCtx.problem().maxOilSaturation(globalDofIdx); oilVaporizationFactor_[globalDofIdx] = FluidSystem::template saturatedDissolutionFactor(fs, gasPhaseIdx, pvtRegionIdx, SoMax); Opm::Valgrind::CheckDefined(oilVaporizationFactor_[globalDofIdx]); } if (gasFormationVolumeFactor_.size() > 0) { gasFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template inverseFormationVolumeFactor(fs, gasPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(gasFormationVolumeFactor_[globalDofIdx]); } if (saturatedOilFormationVolumeFactor_.size() > 0) { saturatedOilFormationVolumeFactor_[globalDofIdx] = 1.0/FluidSystem::template saturatedInverseFormationVolumeFactor(fs, oilPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(saturatedOilFormationVolumeFactor_[globalDofIdx]); } if (oilSaturationPressure_.size() > 0) { oilSaturationPressure_[globalDofIdx] = FluidSystem::template saturationPressure(fs, oilPhaseIdx, pvtRegionIdx); Opm::Valgrind::CheckDefined(oilSaturationPressure_[globalDofIdx]); } if (rs_.size()) { rs_[globalDofIdx] = Opm::getValue(fs.Rs()); Opm::Valgrind::CheckDefined(rs_[globalDofIdx]); } if (rv_.size()) { rv_[globalDofIdx] = Opm::getValue(fs.Rv()); Opm::Valgrind::CheckDefined(rv_[globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (invB_[phaseIdx].size() == 0) continue; invB_[phaseIdx][globalDofIdx] = Opm::getValue(fs.invB(phaseIdx)); Opm::Valgrind::CheckDefined(invB_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (density_[phaseIdx].size() == 0) continue; density_[phaseIdx][globalDofIdx] = Opm::getValue(fs.density(phaseIdx)); Opm::Valgrind::CheckDefined(density_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (viscosity_[phaseIdx].size() == 0) continue; viscosity_[phaseIdx][globalDofIdx] = Opm::getValue(fs.viscosity(phaseIdx)); Opm::Valgrind::CheckDefined(viscosity_[phaseIdx][globalDofIdx]); } for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (relativePermeability_[phaseIdx].size() == 0) continue; relativePermeability_[phaseIdx][globalDofIdx] = Opm::getValue(intQuants.relativePermeability(phaseIdx)); Opm::Valgrind::CheckDefined(relativePermeability_[phaseIdx][globalDofIdx]); } if (sSol_.size() > 0) { sSol_[globalDofIdx] = intQuants.solventSaturation().value(); } if (cPolymer_.size() > 0) { cPolymer_[globalDofIdx] = intQuants.polymerConcentration().value(); } if (cFoam_.size() > 0) { cFoam_[globalDofIdx] = intQuants.foamConcentration().value(); } if (bubblePointPressure_.size() > 0) { try { bubblePointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::bubblePointPressure(fs, intQuants.pvtRegionIndex())); } catch (const Opm::NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; failedCellsPb_.push_back(cartesianIdx); } } if (dewPointPressure_.size() > 0) { try { dewPointPressure_[globalDofIdx] = Opm::getValue(FluidSystem::dewPointPressure(fs, intQuants.pvtRegionIndex())); } catch (const Opm::NumericalIssue&) { const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; failedCellsPd_.push_back(cartesianIdx); } } if (soMax_.size() > 0) soMax_[globalDofIdx] = std::max(Opm::getValue(fs.saturation(oilPhaseIdx)), problem.maxOilSaturation(globalDofIdx)); if (swMax_.size() > 0) swMax_[globalDofIdx] = std::max(Opm::getValue(fs.saturation(waterPhaseIdx)), problem.maxWaterSaturation(globalDofIdx)); if (minimumOilPressure_.size() > 0) minimumOilPressure_[globalDofIdx] = std::min(Opm::getValue(fs.pressure(oilPhaseIdx)), problem.minOilPressure(globalDofIdx)); if (overburdenPressure_.size() > 0) overburdenPressure_[globalDofIdx] = problem.overburdenPressure(globalDofIdx); if (rockCompPorvMultiplier_.size() > 0) rockCompPorvMultiplier_[globalDofIdx] = problem.template rockCompPoroMultiplier(intQuants, globalDofIdx); if (rockCompTransMultiplier_.size() > 0) rockCompTransMultiplier_[globalDofIdx] = problem.template rockCompTransMultiplier(intQuants, globalDofIdx); const auto& matLawManager = problem.materialLawManager(); if (matLawManager->enableHysteresis()) { if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) { matLawManager->oilWaterHysteresisParams( pcSwMdcOw_[globalDofIdx], krnSwMdcOw_[globalDofIdx], globalDofIdx); } if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) { matLawManager->gasOilHysteresisParams( pcSwMdcGo_[globalDofIdx], krnSwMdcGo_[globalDofIdx], globalDofIdx); } } if (ppcw_.size() > 0) ppcw_[globalDofIdx] = matLawManager->oilWaterScaledEpsInfoDrainage(globalDofIdx).maxPcow; // hack to make the intial output of rs and rv Ecl compatible. // For cells with swat == 1 Ecl outputs; rs = rsSat and rv=rvSat, in all but the initial step // where it outputs rs and rv values calculated by the initialization. To be compatible we overwrite // rs and rv with the values computed in the initially. // Volume factors, densities and viscosities need to be recalculated with the updated rs and rv values. // This can be removed when ebos has 100% controll over output if (elemCtx.simulator().episodeIndex() < 0 && FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { const auto& fsInitial = problem.initialFluidState(globalDofIdx); // use initial rs and rv values if (rv_.size() > 0) rv_[globalDofIdx] = fsInitial.Rv(); if (rs_.size() > 0) rs_[globalDofIdx] = fsInitial.Rs(); // re-compute the volume factors, viscosities and densities if asked for if (density_[oilPhaseIdx].size() > 0) density_[oilPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (density_[gasPhaseIdx].size() > 0) density_[gasPhaseIdx][globalDofIdx] = FluidSystem::density(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (invB_[oilPhaseIdx].size() > 0) invB_[oilPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (invB_[gasPhaseIdx].size() > 0) invB_[gasPhaseIdx][globalDofIdx] = FluidSystem::inverseFormationVolumeFactor(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); if (viscosity_[oilPhaseIdx].size() > 0) viscosity_[oilPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, oilPhaseIdx, intQuants.pvtRegionIndex()); if (viscosity_[gasPhaseIdx].size() > 0) viscosity_[gasPhaseIdx][globalDofIdx] = FluidSystem::viscosity(fsInitial, gasPhaseIdx, intQuants.pvtRegionIndex()); } // Add fluid in Place values updateFluidInPlace_(elemCtx, dofIdx); // Adding block data const auto cartesianIdx = elemCtx.simulator().vanguard().grid().globalCell()[globalDofIdx]; for (auto& val: blockData_) { const auto& key = val.first; int cartesianIdxBlock = key.second - 1; if (cartesianIdx == cartesianIdxBlock) { if (key.first == "BWSAT") val.second = Opm::getValue(fs.saturation(waterPhaseIdx)); else if (key.first == "BGSAT") val.second = Opm::getValue(fs.saturation(gasPhaseIdx)); else if (key.first == "BOSAT") val.second = 1. - Opm::getValue(fs.saturation(gasPhaseIdx)) - Opm::getValue(fs.saturation(waterPhaseIdx)); else if (key.first == "BPR") val.second = Opm::getValue(fs.pressure(oilPhaseIdx)); else if (key.first == "BWKR" || key.first == "BKRW") val.second = Opm::getValue(intQuants.relativePermeability(waterPhaseIdx)); else if (key.first == "BGKR" || key.first == "BKRG") val.second = Opm::getValue(intQuants.relativePermeability(gasPhaseIdx)); else if (key.first == "BOKR" || key.first == "BKRO") val.second = Opm::getValue(intQuants.relativePermeability(oilPhaseIdx)); else if (key.first == "BWPC") val.second = Opm::getValue(fs.pressure(oilPhaseIdx)) - Opm::getValue(fs.pressure(waterPhaseIdx)); else if (key.first == "BGPC") val.second = Opm::getValue(fs.pressure(gasPhaseIdx)) - Opm::getValue(fs.pressure(oilPhaseIdx)); else if (key.first == "BVWAT" || key.first == "BWVIS") val.second = Opm::getValue(fs.viscosity(waterPhaseIdx)); else if (key.first == "BVGAS" || key.first == "BGVIS") val.second = Opm::getValue(fs.viscosity(gasPhaseIdx)); else if (key.first == "BVOIL" || key.first == "BOVIS") val.second = Opm::getValue(fs.viscosity(oilPhaseIdx)); else { std::string logstring = "Keyword '"; logstring.append(key.first); logstring.append("' is unhandled for output to file."); Opm::OpmLog::warning("Unhandled output keyword", logstring); } } } // Adding Well RFT data if (oilConnectionPressures_.count(cartesianIdx) > 0) { oilConnectionPressures_[cartesianIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)); } if (waterConnectionSaturations_.count(cartesianIdx) > 0) { waterConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(waterPhaseIdx)); } if (gasConnectionSaturations_.count(cartesianIdx) > 0) { gasConnectionSaturations_[cartesianIdx] = Opm::getValue(fs.saturation(gasPhaseIdx)); } // tracers const auto& tracerModel = simulator_.problem().tracerModel(); if (tracerConcentrations_.size()>0) { for (int tracerIdx = 0; tracerIdx < tracerModel.numTracers(); tracerIdx++){ if (tracerConcentrations_[tracerIdx].size() == 0) continue; tracerConcentrations_[tracerIdx][globalDofIdx] = tracerModel.tracerConcentration(tracerIdx, globalDofIdx); } } } } void outputErrorLog() { const size_t maxNumCellsFaillog = 20; int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size(); std::vector displPb, displPd, recvLenPb, recvLenPd; const auto& comm = simulator_.gridView().comm(); if (isIORank_()) { displPb.resize(comm.size()+1, 0); displPd.resize(comm.size()+1, 0); recvLenPb.resize(comm.size()); recvLenPd.resize(comm.size()); } comm.gather(&pbSize, recvLenPb.data(), 1, 0); comm.gather(&pdSize, recvLenPd.data(), 1, 0); std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1); std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1); std::vector globalFailedCellsPb, globalFailedCellsPd; if (isIORank_()) { globalFailedCellsPb.resize(displPb.back()); globalFailedCellsPd.resize(displPd.back()); } comm.gatherv(failedCellsPb_.data(), static_cast(failedCellsPb_.size()), globalFailedCellsPb.data(), recvLenPb.data(), displPb.data(), 0); comm.gatherv(failedCellsPd_.data(), static_cast(failedCellsPd_.size()), globalFailedCellsPd.data(), recvLenPd.data(), displPd.data(), 0); std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end()); std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end()); if (globalFailedCellsPb.size() > 0) { std::stringstream errlog; errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells ["; errlog << globalFailedCellsPb[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPb[i]; } if (globalFailedCellsPb.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; Opm::OpmLog::warning("Bubble point numerical problem", errlog.str()); } if (globalFailedCellsPd.size() > 0) { std::stringstream errlog; errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells ["; errlog << globalFailedCellsPd[0]; const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size()); for (size_t i = 1; i < maxElems; ++i) { errlog << ", " << globalFailedCellsPd[i]; } if (globalFailedCellsPd.size() > maxNumCellsFaillog) { errlog << ", ..."; } errlog << "]"; Opm::OpmLog::warning("Dew point numerical problem", errlog.str()); } } void addRftDataToWells(Opm::data::Wells& wellDatas, size_t reportStepNum) { const auto& schedule = simulator_.vanguard().schedule(); const auto& rft_config = schedule.rftConfig(); for (const auto& well: schedule.getWells2(reportStepNum)) { // don't bother with wells not on this process const auto& defunctWellNames = simulator_.vanguard().defunctWellNames(); if (defunctWellNames.find(well.name()) != defunctWellNames.end()) { continue; } //add data infrastructure for shut wells if (!wellDatas.count(well.name())) { Opm::data::Well wellData; if (!rft_config.active(reportStepNum)) continue; wellData.connections.resize(well.getConnections().size()); size_t count = 0; for (const auto& connection: well.getConnections()) { const size_t i = size_t(connection.getI()); const size_t j = size_t(connection.getJ()); const size_t k = size_t(connection.getK()); const size_t index = simulator_.vanguard().eclState().getInputGrid().getGlobalIndex(i, j, k); auto& connectionData = wellData.connections[count]; connectionData.index = index; count++; } wellDatas.emplace(std::make_pair(well.name(), wellData)); } Opm::data::Well& wellData = wellDatas.at(well.name()); for (auto& connectionData: wellData.connections) { const auto index = connectionData.index; if (oilConnectionPressures_.count(index) > 0) connectionData.cell_pressure = oilConnectionPressures_.at(index); if (waterConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_water = waterConnectionSaturations_.at(index); if (gasConnectionSaturations_.count(index) > 0) connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index); } } oilConnectionPressures_.clear(); waterConnectionSaturations_.clear(); gasConnectionSaturations_.clear(); } /*! * \brief Move all buffers to data::Solution. */ void assignToSolution(Opm::data::Solution& sol) { if (!std::is_same>::value) return; if (oilPressure_.size() > 0) { sol.insert("PRESSURE", Opm::UnitSystem::measure::pressure, std::move(oilPressure_), Opm::data::TargetType::RESTART_SOLUTION); } if (enableEnergy) { sol.insert("TEMP", Opm::UnitSystem::measure::temperature, std::move(temperature_), Opm::data::TargetType::RESTART_SOLUTION); } if (FluidSystem::phaseIsActive(waterPhaseIdx) && saturation_[waterPhaseIdx].size() > 0) { sol.insert("SWAT", Opm::UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION); } if (FluidSystem::phaseIsActive(gasPhaseIdx) && saturation_[gasPhaseIdx].size() > 0) { sol.insert("SGAS", Opm::UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), Opm::data::TargetType::RESTART_SOLUTION); } if (ppcw_.size() > 0) { sol.insert ("PPCW", Opm::UnitSystem::measure::pressure, std::move(ppcw_), Opm::data::TargetType::RESTART_SOLUTION); } if (gasDissolutionFactor_.size() > 0) { sol.insert("RSSAT", Opm::UnitSystem::measure::gas_oil_ratio, std::move(gasDissolutionFactor_), Opm::data::TargetType::RESTART_AUXILIARY); } if (oilVaporizationFactor_.size() > 0) { sol.insert("RVSAT", Opm::UnitSystem::measure::oil_gas_ratio, std::move(oilVaporizationFactor_), Opm::data::TargetType::RESTART_AUXILIARY); } if (rs_.size() > 0) { sol.insert("RS", Opm::UnitSystem::measure::gas_oil_ratio, std::move(rs_), Opm::data::TargetType::RESTART_SOLUTION); } if (rv_.size() > 0) { sol.insert("RV", Opm::UnitSystem::measure::oil_gas_ratio, std::move(rv_), Opm::data::TargetType::RESTART_SOLUTION); } if (invB_[waterPhaseIdx].size() > 0) { sol.insert("1OVERBW", Opm::UnitSystem::measure::water_inverse_formation_volume_factor, std::move(invB_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (invB_[oilPhaseIdx].size() > 0) { sol.insert("1OVERBO", Opm::UnitSystem::measure::oil_inverse_formation_volume_factor, std::move(invB_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (invB_[gasPhaseIdx].size() > 0) { sol.insert("1OVERBG", Opm::UnitSystem::measure::gas_inverse_formation_volume_factor, std::move(invB_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[waterPhaseIdx].size() > 0) { sol.insert("WAT_DEN", Opm::UnitSystem::measure::density, std::move(density_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[oilPhaseIdx].size() > 0) { sol.insert("OIL_DEN", Opm::UnitSystem::measure::density, std::move(density_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (density_[gasPhaseIdx].size() > 0) { sol.insert("GAS_DEN", Opm::UnitSystem::measure::density, std::move(density_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[waterPhaseIdx].size() > 0) { sol.insert("WAT_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[oilPhaseIdx].size() > 0) { sol.insert("OIL_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (viscosity_[gasPhaseIdx].size() > 0) { sol.insert("GAS_VISC", Opm::UnitSystem::measure::viscosity, std::move(viscosity_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[waterPhaseIdx].size() > 0) { sol.insert("WATKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[waterPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[oilPhaseIdx].size() > 0) { sol.insert("OILKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[oilPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (relativePermeability_[gasPhaseIdx].size() > 0) { sol.insert("GASKR", Opm::UnitSystem::measure::identity, std::move(relativePermeability_[gasPhaseIdx]), Opm::data::TargetType::RESTART_AUXILIARY); } if (pcSwMdcOw_.size() > 0) sol.insert ("PCSWM_OW", Opm::UnitSystem::measure::identity, std::move(pcSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY); if (krnSwMdcOw_.size() > 0) sol.insert ("KRNSW_OW", Opm::UnitSystem::measure::identity, std::move(krnSwMdcOw_), Opm::data::TargetType::RESTART_AUXILIARY); if (pcSwMdcGo_.size() > 0) sol.insert ("PCSWM_GO", Opm::UnitSystem::measure::identity, std::move(pcSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY); if (krnSwMdcGo_.size() > 0) sol.insert ("KRNSW_GO", Opm::UnitSystem::measure::identity, std::move(krnSwMdcGo_), Opm::data::TargetType::RESTART_AUXILIARY); if (soMax_.size() > 0) sol.insert ("SOMAX", Opm::UnitSystem::measure::identity, std::move(soMax_), Opm::data::TargetType::RESTART_SOLUTION); if (sSol_.size() > 0) sol.insert ("SSOLVENT", Opm::UnitSystem::measure::identity, std::move(sSol_), Opm::data::TargetType::RESTART_SOLUTION); if (cPolymer_.size() > 0) sol.insert ("POLYMER", Opm::UnitSystem::measure::identity, std::move(cPolymer_), Opm::data::TargetType::RESTART_SOLUTION); if (cFoam_.size() > 0) sol.insert ("FOAM", Opm::UnitSystem::measure::identity, std::move(cFoam_), Opm::data::TargetType::RESTART_SOLUTION); if (dewPointPressure_.size() > 0) sol.insert ("PDEW", Opm::UnitSystem::measure::pressure, std::move(dewPointPressure_), Opm::data::TargetType::RESTART_AUXILIARY); if (bubblePointPressure_.size() > 0) sol.insert ("PBUB", Opm::UnitSystem::measure::pressure, std::move(bubblePointPressure_), Opm::data::TargetType::RESTART_AUXILIARY); if (swMax_.size() > 0) sol.insert ("SWMAX", Opm::UnitSystem::measure::identity, std::move(swMax_), Opm::data::TargetType::RESTART_SOLUTION); if (minimumOilPressure_.size() > 0) sol.insert ("PRESROCC", Opm::UnitSystem::measure::pressure, std::move(minimumOilPressure_), Opm::data::TargetType::RESTART_SOLUTION); if (overburdenPressure_.size() > 0) sol.insert ("PRES_OVB", Opm::UnitSystem::measure::pressure, std::move(overburdenPressure_), Opm::data::TargetType::RESTART_SOLUTION); if (rockCompPorvMultiplier_.size() > 0) sol.insert ("PORV_RC", Opm::UnitSystem::measure::identity, std::move(rockCompPorvMultiplier_), Opm::data::TargetType::RESTART_SOLUTION); if (rockCompTransMultiplier_.size() > 0) sol.insert ("TMULT_RC", Opm::UnitSystem::measure::identity, std::move(rockCompTransMultiplier_), Opm::data::TargetType::RESTART_SOLUTION); // Fluid in place for (int i = 0; i 0) { sol.insert(fipEnumToString_(i), Opm::UnitSystem::measure::volume, fip_[i], Opm::data::TargetType::SUMMARY); } } // tracers const auto& tracerModel = simulator_.problem().tracerModel(); if (tracerConcentrations_.size() > 0) { for (int tracerIdx = 0; tracerIdx& miscSummaryData, std::map>& regionData, const bool substep) { const auto& comm = simulator_.gridView().comm(); auto maxElement = std::max_element(fipnum_.begin(), fipnum_.end()); size_t ntFip = 0; if ( maxElement != fipnum_.end() ) { ntFip = *maxElement; } ntFip = comm.max(ntFip); // sum values over each region ScalarBuffer regionFipValues[FipDataType::numFipValues]; for (int i = 0; i < FipDataType::numFipValues; i++) { regionFipValues[i] = computeFipForRegions_(fip_[i], fipnum_, ntFip); if (isIORank_() && origRegionValues_[i].empty()) origRegionValues_[i] = regionFipValues[i]; } // sum all region values to compute the field total std::vector fieldNum(ntFip, 1); ScalarBuffer fieldFipValues(FipDataType::numFipValues, 0.0); bool comunicateSum = false; // the regionValues are already summed over all ranks. for (int i = 0; i 0 && sol.has("SWAT")) { saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex]; so -= sol.data("SWAT")[globalDofIndex]; } if (saturation_[gasPhaseIdx].size() > 0 && sol.has("SGAS")) { saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex]; so -= sol.data("SGAS")[globalDofIndex]; } assert(saturation_[oilPhaseIdx].size() > 0); saturation_[oilPhaseIdx][elemIdx] = so; if (oilPressure_.size() > 0 && sol.has("PRESSURE")) oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex]; if (enableEnergy && sol.has("TEMP")) temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex]; if (rs_.size() > 0 && sol.has("RS")) rs_[elemIdx] = sol.data("RS")[globalDofIndex]; if (rv_.size() > 0 && sol.has("RV")) rv_[elemIdx] = sol.data("RV")[globalDofIndex]; if (sSol_.size() > 0) { // keep the SSOL option for backward compatibility // should be removed after 10.2018 release if (sol.has("SSOL")) sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex]; else if (sol.has("SSOLVENT")) sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex]; } if (cPolymer_.size() > 0 && sol.has("POLYMER")) cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex]; if (cFoam_.size() > 0 && sol.has("FOAM")) cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex]; if (soMax_.size() > 0 && sol.has("SOMAX")) soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex]; if (pcSwMdcOw_.size() > 0 &&sol.has("PCSWM_OW")) pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex]; if (krnSwMdcOw_.size() > 0 && sol.has("KRNSW_OW")) krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex]; if (pcSwMdcGo_.size() > 0 && sol.has("PCSWM_GO")) pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex]; if (krnSwMdcGo_.size() > 0 && sol.has("KRNSW_GO")) krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex]; if (ppcw_.size() > 0 && sol.has("PPCW")) ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex]; } template void assignToFluidState(FluidState& fs, unsigned elemIdx) const { for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { if (saturation_[phaseIdx].size() == 0) continue; fs.setSaturation(phaseIdx, saturation_[phaseIdx][elemIdx]); } if (oilPressure_.size() > 0) { // this assumes that capillary pressures only depend on the phase saturations // and possibly on temperature. (this is always the case for ECL problems.) Dune::FieldVector< Scalar, numPhases > pc(0); const MaterialLawParams& matParams = simulator_.problem().materialLawParams(elemIdx); MaterialLaw::capillaryPressures(pc, matParams, fs); Opm::Valgrind::CheckDefined(oilPressure_[elemIdx]); Opm::Valgrind::CheckDefined(pc); assert(FluidSystem::phaseIsActive(oilPhaseIdx)); for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) continue; fs.setPressure(phaseIdx, oilPressure_[elemIdx] + (pc[phaseIdx] - pc[oilPhaseIdx])); } } if (enableEnergy) fs.setTemperature(temperature_[elemIdx]); if (rs_.size() > 0) fs.setRs(rs_[elemIdx]); if (rv_.size() > 0) fs.setRv(rv_[elemIdx]); } void initHysteresisParams(Simulator& simulator, unsigned elemIdx) const { if (soMax_.size() > 0) simulator.problem().setMaxOilSaturation(elemIdx, soMax_[elemIdx]); if (simulator.problem().materialLawManager()->enableHysteresis()) { auto matLawManager = simulator.problem().materialLawManager(); if (pcSwMdcOw_.size() > 0 && krnSwMdcOw_.size() > 0) { matLawManager->setOilWaterHysteresisParams( pcSwMdcOw_[elemIdx], krnSwMdcOw_[elemIdx], elemIdx); } if (pcSwMdcGo_.size() > 0 && krnSwMdcGo_.size() > 0) { matLawManager->setGasOilHysteresisParams( pcSwMdcGo_[elemIdx], krnSwMdcGo_[elemIdx], elemIdx); } } if (simulator_.vanguard().eclState().get3DProperties().hasDeckDoubleGridProperty("SWATINIT")) { auto oilWaterScaledEpsInfoDrainage = simulator.problem().materialLawManager()->oilWaterScaledEpsInfoDrainagePointerReferenceHack(elemIdx); oilWaterScaledEpsInfoDrainage->maxPcow = ppcw_[elemIdx]; } } Scalar getSolventSaturation(unsigned elemIdx) const { if (sSol_.size() > elemIdx) return sSol_[elemIdx]; return 0; } Scalar getPolymerConcentration(unsigned elemIdx) const { if (cPolymer_.size() > elemIdx) return cPolymer_[elemIdx]; return 0; } Scalar getFoamConcentration(unsigned elemIdx) const { if (cFoam_.size() > elemIdx) return cFoam_[elemIdx]; return 0; } const std::map, double>& getBlockData() { return blockData_; } private: bool isIORank_() const { const auto& comm = simulator_.gridView().comm(); return comm.rank() == 0; } void updateFluidInPlace_(const ElementContext& elemCtx, unsigned dofIdx) { const auto& intQuants = elemCtx.intensiveQuantities(dofIdx, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); unsigned globalDofIdx = elemCtx.globalSpaceIndex(dofIdx, /*timeIdx=*/0); // Fluid in Place calculations // calculate the pore volume of the current cell. Note that the porosity // returned by the intensive quantities is defined as the ratio of pore // space to total cell volume and includes all pressure dependent (-> // rock compressibility) and static modifiers (MULTPV, MULTREGP, NTG, // PORV, MINPV and friends). Also note that because of this, the porosity // returned by the intensive quantities can be outside of the physical // range [0, 1] in pathetic cases. const double pv = elemCtx.simulator().model().dofTotalVolume(globalDofIdx) * intQuants.porosity().value(); if (pressureTimesHydrocarbonVolume_.size() > 0 && pressureTimesPoreVolume_.size() > 0) { assert(hydrocarbonPoreVolume_.size() == pressureTimesHydrocarbonVolume_.size()); assert(fip_[FipDataType::PoreVolume].size() == pressureTimesPoreVolume_.size()); fip_[FipDataType::PoreVolume][globalDofIdx] = pv; Scalar hydrocarbon = 0.0; if (FluidSystem::phaseIsActive(oilPhaseIdx)) hydrocarbon += Opm::getValue(fs.saturation(oilPhaseIdx)); if (FluidSystem::phaseIsActive(gasPhaseIdx)) hydrocarbon += Opm::getValue(fs.saturation(gasPhaseIdx)); hydrocarbonPoreVolume_[globalDofIdx] = pv * hydrocarbon; if (FluidSystem::phaseIsActive(oilPhaseIdx)) { pressureTimesPoreVolume_[globalDofIdx] = Opm::getValue(fs.pressure(oilPhaseIdx)) * pv; pressureTimesHydrocarbonVolume_[globalDofIdx] = pressureTimesPoreVolume_[globalDofIdx] * hydrocarbon; } } if (computeFip_) { Scalar fip[FluidSystem::numPhases]; for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) { fip[phaseIdx] = 0.0; if (!FluidSystem::phaseIsActive(phaseIdx)) continue; const double b = Opm::getValue(fs.invB(phaseIdx)); const double s = Opm::getValue(fs.saturation(phaseIdx)); fip[phaseIdx] = b * s * pv; } if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlace].size() > 0) fip_[FipDataType::OilInPlace][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlace].size() > 0) fip_[FipDataType::GasInPlace][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(waterPhaseIdx) && fip_[FipDataType::WaterInPlace].size() > 0) fip_[FipDataType::WaterInPlace][globalDofIdx] = fip[waterPhaseIdx]; // Store the pure oil and gas Fip if (FluidSystem::phaseIsActive(oilPhaseIdx) && fip_[FipDataType::OilInPlaceInLiquidPhase].size() > 0) fip_[FipDataType::OilInPlaceInLiquidPhase][globalDofIdx] = fip[oilPhaseIdx]; if (FluidSystem::phaseIsActive(gasPhaseIdx) && fip_[FipDataType::GasInPlaceInGasPhase].size() > 0) fip_[FipDataType::GasInPlaceInGasPhase][globalDofIdx] = fip[gasPhaseIdx]; if (FluidSystem::phaseIsActive(oilPhaseIdx) && FluidSystem::phaseIsActive(gasPhaseIdx)) { // Gas dissolved in oil and vaporized oil Scalar gasInPlaceLiquid = Opm::getValue(fs.Rs()) * fip[oilPhaseIdx]; Scalar oilInPlaceGas = Opm::getValue(fs.Rv()) * fip[gasPhaseIdx]; if (fip_[FipDataType::GasInPlaceInLiquidPhase].size() > 0) fip_[FipDataType::GasInPlaceInLiquidPhase][globalDofIdx] = gasInPlaceLiquid; if (fip_[FipDataType::OilInPlaceInGasPhase].size() > 0) fip_[FipDataType::OilInPlaceInGasPhase][globalDofIdx] = oilInPlaceGas; // Add dissolved gas and vaporized oil to total Fip if (fip_[FipDataType::OilInPlace].size() > 0) fip_[FipDataType::OilInPlace][globalDofIdx] += oilInPlaceGas; if (fip_[FipDataType::GasInPlace].size() > 0) fip_[FipDataType::GasInPlace][globalDofIdx] += gasInPlaceLiquid; } } } void createLocalFipnum_() { const std::vector& fipnumGlobal = simulator_.vanguard().eclState().get3DProperties().getIntGridProperty("FIPNUM").getData(); // Get compressed cell fipnum. const auto& gridView = simulator_.vanguard().gridView(); unsigned numElements = gridView.size(/*codim=*/0); fipnum_.resize(numElements, 0.0); if (!fipnumGlobal.empty()) { ElementContext elemCtx(simulator_); ElementIterator elemIt = gridView.template begin(); const ElementIterator& elemEndIt = gridView.template end(); for (; elemIt != elemEndIt; ++elemIt) { const Element& elem = *elemIt; if (elem.partitionType() != Dune::InteriorEntity) continue; // assign no fipnum regions to ghost elements elemCtx.updatePrimaryStencil(elem); const unsigned elemIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); fipnum_[elemIdx] = fipnumGlobal[simulator_.vanguard().cartesianIndex(elemIdx)]; } } } // Sum Fip values over regions. ScalarBuffer computeFipForRegions_(const ScalarBuffer& fip, std::vector& regionId, size_t maxNumberOfRegions, bool commSum = true) { ScalarBuffer totals(maxNumberOfRegions, 0.0); if (fip.empty()) return totals; assert(regionId.size() == fip.size()); for (size_t j = 0; j < regionId.size(); ++j) { const int regionIdx = regionId[j] - 1; // the cell is not attributed to any region. ignore it! if (regionIdx < 0) continue; assert(regionIdx < static_cast(maxNumberOfRegions)); totals[regionIdx] += fip[j]; } if (commSum) { const auto& comm = simulator_.gridView().comm(); for (size_t i = 0; i < maxNumberOfRegions; ++i) totals[i] = comm.sum(totals[i]); } return totals; } ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon, const ScalarBuffer& pvHydrocarbon, const ScalarBuffer& pressurePv, const ScalarBuffer& pv, bool hydrocarbon) { size_t size = pressurePvHydrocarbon.size(); assert(pvHydrocarbon.size() == size); assert(pressurePv.size() == size); assert(pv.size() == size); ScalarBuffer fraction(size, 0.0); for (size_t i = 0; i < size; ++i) { fraction[i] = pressureAverage_(pressurePvHydrocarbon[i], pvHydrocarbon[i], pressurePv[i], pv[i], hydrocarbon); } return fraction; } Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon, const Scalar& pvHydrocarbon, const Scalar& pressurePv, const Scalar& pv, bool hydrocarbon) { if (pvHydrocarbon > 1e-10 && hydrocarbon) return pressurePvHydrocarbon / pvHydrocarbon; return pressurePv / pv; } void fipUnitConvert_(ScalarBuffer& fip) { const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], Opm::unit::stb); fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], Opm::unit::stb); fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], Opm::unit::stb); fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], Opm::unit::stb); fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], 1000*Opm::unit::cubic(Opm::unit::feet)); fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], Opm::unit::stb); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { Scalar scc = Opm::unit::cubic(Opm::prefix::centi * Opm::unit::meter); //standard cubic cm. fip[FipDataType::WaterInPlace] = Opm::unit::convert::to(fip[FipDataType::WaterInPlace], scc); fip[FipDataType::OilInPlace] = Opm::unit::convert::to(fip[FipDataType::OilInPlace], scc); fip[FipDataType::OilInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInLiquidPhase], scc); fip[FipDataType::OilInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::OilInPlaceInGasPhase], scc); fip[FipDataType::GasInPlace] = Opm::unit::convert::to(fip[FipDataType::GasInPlace], scc); fip[FipDataType::GasInPlaceInLiquidPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInLiquidPhase], scc); fip[FipDataType::GasInPlaceInGasPhase] = Opm::unit::convert::to(fip[FipDataType::GasInPlaceInGasPhase], scc); fip[FipDataType::PoreVolume] = Opm::unit::convert::to(fip[FipDataType::PoreVolume], scc); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { // nothing to do } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } void pressureUnitConvert_(Scalar& pav) { const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { pav = Opm::unit::convert::to(pav, Opm::unit::psia); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { pav = Opm::unit::convert::to(pav, Opm::unit::barsa); } else if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_LAB) { pav = Opm::unit::convert::to(pav, Opm::unit::atm); } else { throw std::runtime_error("Unsupported unit type for fluid in place output."); } } void outputRegionFluidInPlace_(const ScalarBuffer& oip, const ScalarBuffer& cip, const Scalar& pav, const int reg) { if (forceDisableFipOutput_) return; // don't output FIPNUM report if the region has no porv. if (cip[FipDataType::PoreVolume] == 0) return; const Opm::UnitSystem& units = simulator_.vanguard().eclState().getUnits(); std::ostringstream ss; if (!reg) { ss << " ===================================================\n" << " : Field Totals :\n"; } else { ss << " ===================================================\n" << " : FIPNUM report region " << std::setw(2) << reg << " :\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_METRIC) { ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RM3 :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Porv volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n"; } if (units.getType() == Opm::UnitSystem::UnitType::UNIT_TYPE_FIELD) { ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n" << std::fixed << std::setprecision(0) << " : PORV =" << std::setw(14) << cip[FipDataType::PoreVolume] << " RB :\n"; if (!reg) { ss << " : Pressure is weighted by hydrocarbon pore volume :\n" << " : Pore volumes are taken at reference conditions :\n"; } ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n"; } ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n" << ":Currently in place :" << std::setw(14) << cip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << cip[FipDataType::OilInPlace] << ":" << std::setw(13) << cip[FipDataType::WaterInPlace] << " :" << std::setw(14) << (cip[FipDataType::GasInPlaceInGasPhase]) << std::setw(14) << cip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << cip[FipDataType::GasInPlace] << ":\n" << ":------------------------:------------------------------------------:----------------:------------------------------------------:\n" << ":Originally in place :" << std::setw(14) << oip[FipDataType::OilInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::OilInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::OilInPlace] << ":" << std::setw(13) << oip[FipDataType::WaterInPlace] << " :" << std::setw(14) << oip[FipDataType::GasInPlaceInGasPhase] << std::setw(14) << oip[FipDataType::GasInPlaceInLiquidPhase] << std::setw(14) << oip[FipDataType::GasInPlace] << ":\n" << ":========================:==========================================:================:==========================================:\n"; Opm::OpmLog::note(ss.str()); } std::string fipEnumToString_(int i) { typedef typename FipDataType::FipId FipId; switch(static_cast(i)) { case FipDataType::WaterInPlace: return "WIP"; case FipDataType::OilInPlace: return "OIP"; case FipDataType::GasInPlace: return "GIP"; case FipDataType::OilInPlaceInLiquidPhase: return "OIPL"; case FipDataType::OilInPlaceInGasPhase: return "OIPG"; case FipDataType::GasInPlaceInLiquidPhase: return "GIPL"; case FipDataType::GasInPlaceInGasPhase: return "GIPG"; case FipDataType::PoreVolume: return "PV"; } return "ERROR"; } const Simulator& simulator_; bool outputFipRestart_; bool computeFip_; bool forceDisableFipOutput_; ScalarBuffer saturation_[numPhases]; ScalarBuffer oilPressure_; ScalarBuffer temperature_; ScalarBuffer gasDissolutionFactor_; ScalarBuffer oilVaporizationFactor_; ScalarBuffer gasFormationVolumeFactor_; ScalarBuffer saturatedOilFormationVolumeFactor_; ScalarBuffer oilSaturationPressure_; ScalarBuffer rs_; ScalarBuffer rv_; ScalarBuffer invB_[numPhases]; ScalarBuffer density_[numPhases]; ScalarBuffer viscosity_[numPhases]; ScalarBuffer relativePermeability_[numPhases]; ScalarBuffer sSol_; ScalarBuffer cPolymer_; ScalarBuffer cFoam_; ScalarBuffer soMax_; ScalarBuffer pcSwMdcOw_; ScalarBuffer krnSwMdcOw_; ScalarBuffer pcSwMdcGo_; ScalarBuffer krnSwMdcGo_; ScalarBuffer ppcw_; ScalarBuffer bubblePointPressure_; ScalarBuffer dewPointPressure_; ScalarBuffer rockCompPorvMultiplier_; ScalarBuffer rockCompTransMultiplier_; ScalarBuffer swMax_; ScalarBuffer overburdenPressure_; ScalarBuffer minimumOilPressure_; std::vector failedCellsPb_; std::vector failedCellsPd_; std::vector fipnum_; ScalarBuffer fip_[FipDataType::numFipValues]; ScalarBuffer origTotalValues_; ScalarBuffer origRegionValues_[FipDataType::numFipValues]; ScalarBuffer hydrocarbonPoreVolume_; ScalarBuffer pressureTimesPoreVolume_; ScalarBuffer pressureTimesHydrocarbonVolume_; std::map, double> blockData_; std::map oilConnectionPressures_; std::map waterConnectionSaturations_; std::map gasConnectionSaturations_; std::vector tracerConcentrations_; }; } // namespace Opm #endif