/* Copyright 2015, 2022 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 Statoil AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include namespace Opm { namespace detail { //! Compute Blocked ILU0 decomposition, when we know junk ghost rows are located at the end of A template void ghost_last_bilu0_decomposition (M& A, size_t interiorSize) { // iterator types using rowiterator = typename M::RowIterator; using coliterator = typename M::ColIterator; using block = typename M::block_type; // implement left looking variant with stored inverse for (rowiterator i = A.begin(); i.index() < interiorSize; ++i) { // coliterator is diagonal after the following loop coliterator endij=(*i).end(); // end of row i coliterator ij; // eliminate entries left of diagonal; store L factor for (ij=(*i).begin(); ij.index() void convertToCRS(const M& A, CRS& lower, CRS& upper, InvVector& inv) { OPM_TIMEBLOCK(convertToCRS); // No need to do anything for 0 rows. Return to prevent indexing a // a zero sized array. if ( A.N() == 0 ) { return; } using size_type = typename M :: size_type; lower.clear(); upper.clear(); inv.clear(); lower.resize( A.N() ); upper.resize( A.N() ); inv.resize( A.N() ); // Count the lower and upper matrix entries. size_type numLower = 0; size_type numUpper = 0; const auto endi = A.end(); for (auto i = A.begin(); i != endi; ++i) { const size_type iIndex = i.index(); size_type numLowerRow = 0; for (auto j = (*i).begin(); j.index() < iIndex; ++j) { ++numLowerRow; } numLower += numLowerRow; numUpper += (*i).size() - numLowerRow - 1; } assert(numLower + numUpper + A.N() == A.nonzeroes()); lower.reserveAdditional( numLower ); // implement left looking variant with stored inverse size_type row = 0; size_type colcount = 0; lower.rows_[ 0 ] = colcount; for (auto i=A.begin(); i!=endi; ++i, ++row) { const size_type iIndex = i.index(); // eliminate entries left of diagonal; store L factor for (auto j=(*i).begin(); j.index() < iIndex; ++j ) { lower.push_back( (*j), j.index() ); ++colcount; } lower.rows_[ iIndex+1 ] = colcount; } assert(colcount == numLower); const auto rendi = A.beforeBegin(); row = 0; colcount = 0; upper.rows_[ 0 ] = colcount ; upper.reserveAdditional( numUpper ); // NOTE: upper and inv store entries in reverse order, reverse here // relative to ILU for (auto i=A.beforeEnd(); i!=rendi; --i, ++ row ) { const size_type iIndex = i.index(); // store in reverse row order // eliminate entries left of diagonal; store L factor for (auto j=(*i).beforeEnd(); j.index()>=iIndex; --j ) { const size_type jIndex = j.index(); if( j.index() == iIndex ) { inv[ row ] = (*j); break; } else if ( j.index() >= i.index() ) { upper.push_back( (*j), jIndex ); ++colcount ; } } upper.rows_[ row+1 ] = colcount; } assert(colcount == numUpper); } } // end namespace detail template Dune::SolverCategory::Category ParallelOverlappingILU0::category() const { return std::is_same_v ? Dune::SolverCategory::sequential : Dune::SolverCategory::overlapping; } template ParallelOverlappingILU0:: ParallelOverlappingILU0(const Matrix& A, const int n, const field_type w, MILU_VARIANT milu, bool redblack, bool reorder_sphere) : lower_(), upper_(), inv_(), comm_(nullptr), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ), A_(&reinterpret_cast(A)), iluIteration_(n), milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere) { interiorSize_ = A.N(); // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. update(); } template ParallelOverlappingILU0:: ParallelOverlappingILU0(const Matrix& A, const ParallelInfo& comm, const int n, const field_type w, MILU_VARIANT milu, bool redblack, bool reorder_sphere) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ), A_(&reinterpret_cast(A)), iluIteration_(n), milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere) { interiorSize_ = A.N(); // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. update(); } template ParallelOverlappingILU0:: ParallelOverlappingILU0(const Matrix& A, const field_type w, MILU_VARIANT milu, bool redblack, bool reorder_sphere) : ParallelOverlappingILU0( A, 0, w, milu, redblack, reorder_sphere ) {} template ParallelOverlappingILU0:: ParallelOverlappingILU0(const Matrix& A, const ParallelInfo& comm, const field_type w, MILU_VARIANT milu, bool redblack, bool reorder_sphere) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ), A_(&reinterpret_cast(A)), iluIteration_(0), milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere) { interiorSize_ = A.N(); // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. update(); } template ParallelOverlappingILU0:: ParallelOverlappingILU0(const Matrix& A, const ParallelInfo& comm, const field_type w, MILU_VARIANT milu, size_type interiorSize, bool redblack, bool reorder_sphere) : lower_(), upper_(), inv_(), comm_(&comm), w_(w), relaxation_( std::abs( w - 1.0 ) > 1e-15 ), interiorSize_(interiorSize), A_(&reinterpret_cast(A)), iluIteration_(0), milu_(milu), redBlack_(redblack), reorderSphere_(reorder_sphere) { // BlockMatrix is a Subclass of FieldMatrix that just adds // methods. Therefore this cast should be safe. update( ); } template void ParallelOverlappingILU0:: apply (Domain& v, const Range& d) { OPM_TIMEBLOCK(apply); Range& md = reorderD(d); Domain& mv = reorderV(v); // iterator types using dblock = typename Range ::block_type; using vblock = typename Domain::block_type; const size_type iEnd = lower_.rows(); const size_type lastRow = iEnd - 1; size_type upperLoopStart = iEnd - interiorSize_; size_type lowerLoopEnd = interiorSize_; if (iEnd != upper_.rows()) { OPM_THROW(std::logic_error,"ILU: number of lower and upper rows must be the same"); } // lower triangular solve for (size_type i = 0; i < lowerLoopEnd; ++i) { dblock rhs( md[ i ] ); const size_type rowI = lower_.rows_[ i ]; const size_type rowINext = lower_.rows_[ i+1 ]; for (size_type col = rowI; col < rowINext; ++col) { lower_.values_[ col ].mmv( mv[ lower_.cols_[ col ] ], rhs ); } mv[ i ] = rhs; // Lii = I } for (size_type i = upperLoopStart; i < iEnd; ++i) { vblock& vBlock = mv[ lastRow - i ]; vblock rhs ( vBlock ); const size_type rowI = upper_.rows_[ i ]; const size_type rowINext = upper_.rows_[ i+1 ]; for (size_type col = rowI; col < rowINext; ++col) { upper_.values_[ col ].mmv( mv[ upper_.cols_[ col ] ], rhs ); } // apply inverse and store result inv_[ i ].mv( rhs, vBlock); } copyOwnerToAll( mv ); if( relaxation_ ) { mv *= w_; } reorderBack(mv, v); } template template void ParallelOverlappingILU0:: copyOwnerToAll(V& v) const { if( comm_ ) { comm_->copyOwnerToAll(v, v); } } template void ParallelOverlappingILU0:: update() { OPM_TIMEBLOCK(update); // (For older DUNE versions the communicator might be // invalid if redistribution in AMG happened on the coarset level. // Therefore we check for nonzero size if (comm_ && comm_->communicator().size() <= 0) { if (A_->N() > 0) { OPM_THROW(std::logic_error, "Expected a matrix with zero rows for an invalid communicator."); } else { // simply set the communicator to null comm_ = nullptr; } } int ilu_setup_successful = 1; std::string message; const int rank = comm_ ? comm_->communicator().rank() : 0; if (redBlack_) { using Graph = Dune::Amg::MatrixGraph; Graph graph(*A_); auto colorsTuple = colorVerticesWelshPowell(graph); const auto& colors = std::get<0>(colorsTuple); const auto& verticesPerColor = std::get<2>(colorsTuple); auto noColors = std::get<1>(colorsTuple); if ( reorderSphere_ ) { ordering_ = reorderVerticesSpheres(colors, noColors, verticesPerColor, graph, 0); } else { ordering_ = reorderVerticesPreserving(colors, noColors, verticesPerColor, graph); } } std::vector inverseOrdering(ordering_.size()); std::size_t index = 0; for (const auto newIndex : ordering_) { inverseOrdering[newIndex] = index++; } try { OPM_TIMEBLOCK(iluDecomposition); if (iluIteration_ == 0) { // create ILU-0 decomposition if (ordering_.empty()) { if (ILU_) { OPM_TIMEBLOCK(iluDecompositionMakeMatrix); // The ILU_ matrix is already a copy with the same // sparse structure as A_, but the values of A_ may // have changed, so we must copy all elements. for (size_t row = 0; row < A_->N(); ++row) { const auto& Arow = (*A_)[row]; auto& ILUrow = (*ILU_)[row]; auto Ait = Arow.begin(); auto Iit = ILUrow.begin(); for (; Ait != Arow.end(); ++Ait, ++Iit) { *Iit = *Ait; } } } else { // First call, must duplicate matrix. ILU_ = std::make_unique(*A_); } } else { ILU_ = std::make_unique(A_->N(), A_->M(), A_->nonzeroes(), Matrix::row_wise); auto& newA = *ILU_; // Create sparsity pattern for (auto iter = newA.createbegin(), iend = newA.createend(); iter != iend; ++iter) { const auto& row = (*A_)[inverseOrdering[iter.index()]]; for (auto col = row.begin(), cend = row.end(); col != cend; ++col) { iter.insert(ordering_[col.index()]); } } // Copy values for (auto iter = A_->begin(), iend = A_->end(); iter != iend; ++iter) { auto& newRow = newA[ordering_[iter.index()]]; for (auto col = iter->begin(), cend = iter->end(); col != cend; ++col) { newRow[ordering_[col.index()]] = *col; } } } switch (milu_) { case MILU_VARIANT::MILU_1: detail::milu0_decomposition ( *ILU_); break; case MILU_VARIANT::MILU_2: detail::milu0_decomposition ( *ILU_, detail::identityFunctor, detail::signFunctor ); break; case MILU_VARIANT::MILU_3: detail::milu0_decomposition ( *ILU_, detail::absFunctor, detail::signFunctor ); break; case MILU_VARIANT::MILU_4: detail::milu0_decomposition ( *ILU_, detail::identityFunctor, detail::isPositiveFunctor ); break; default: if (interiorSize_ == A_->N()) #if DUNE_VERSION_LT(DUNE_GRID, 2, 8) bilu0_decomposition( *ILU_ ); #else Dune::ILU::blockILU0Decomposition( *ILU_ ); #endif else detail::ghost_last_bilu0_decomposition(*ILU_, interiorSize_); break; } } else { // create ILU-n decomposition ILU_ = std::make_unique(A_->N(), A_->M(), Matrix::row_wise); std::unique_ptr reorderer, inverseReorderer; if (ordering_.empty()) { reorderer.reset(new detail::NoReorderer()); inverseReorderer.reset(new detail::NoReorderer()); } else { reorderer.reset(new detail::RealReorderer(ordering_)); inverseReorderer.reset(new detail::RealReorderer(inverseOrdering)); } milun_decomposition( *A_, iluIteration_, milu_, *ILU_, *reorderer, *inverseReorderer ); } } catch (const Dune::MatrixBlockError& error) { message = error.what(); std::cerr << "Exception occurred on process " << rank << " during " << "setup of ILU0 preconditioner with message: " << message<communicator().min(ilu_setup_successful) == 0; const bool local_failure = ilu_setup_successful == 0; if (local_failure || parallel_failure) { throw Dune::MatrixBlockError(); } // store ILU in simple CRS format detail::convertToCRS(*ILU_, lower_, upper_, inv_); } template Range& ParallelOverlappingILU0:: reorderD(const Range& d) { if (ordering_.empty()) { // As d is non-const in the apply method of the // solver casting away constness in this particular // setting is not undefined. It is ugly though but due // to the preconditioner interface of dune-istl. return const_cast(d); } else { reorderedD_.resize(d.size()); std::size_t i = 0; for (const auto index : ordering_) { reorderedD_[index] = d[i++]; } return reorderedD_; } } template Domain& ParallelOverlappingILU0:: reorderV(Domain& v) { if (ordering_.empty()) { return v; } else { reorderedV_.resize(v.size()); std::size_t i = 0; for (const auto index : ordering_) { reorderedV_[index] = v[i++]; } return reorderedV_; } } template void ParallelOverlappingILU0:: reorderBack(const Range& reorderedV, Range& v) { if (!ordering_.empty()) { std::size_t i = 0; for (const auto index : ordering_) { v[i++] = reorderedV[index]; } } } } // end namespace Opm