/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /// Construct solver, possibly with rock compressibility. /// \param[in] grid A 2d or 3d grid. /// \param[in] props Rock and fluid properties. /// \param[in] rock_comp_props Rock compressibility properties. May be null. /// \param[in] linsolver Linear solver to use. /// \param[in] residual_tol Solution accepted if inf-norm of residual is smaller. /// \param[in] change_tol Solution accepted if inf-norm of change in pressure is smaller. /// \param[in] maxiter Maximum acceptable number of iterations. /// \param[in] gravity Gravity vector. If non-null, the array should /// have D elements. /// \param[in] wells The wells argument. Will be used in solution, /// is ignored if NULL. /// Note: this class observes the well object, and /// makes the assumption that the well topology /// and completions does not change during the /// run. However, controls (only) are allowed /// to change. /// \param[in] src Source terms. May be empty(). /// \param[in] bcs Boundary conditions, treat as all noflow if null. IncompTpfaPolymer::IncompTpfaPolymer(const UnstructuredGrid& grid, const IncompPropertiesInterface& props, const RockCompressibility* rock_comp_props, const PolymerProperties& poly_props, LinearSolverInterface& linsolver, const double residual_tol, const double change_tol, const int maxiter, const double* gravity, const Wells* wells, const std::vector& src, const FlowBoundaryConditions* bcs) : IncompTpfa(grid, props, rock_comp_props, linsolver, residual_tol, change_tol, maxiter, gravity, wells, src, bcs), poly_props_(poly_props), c_(0), cmax_(0) { } /// Solve the pressure equation. If there is no pressure /// dependency introduced by rock compressibility effects, /// the equation is linear, and it is solved directly. /// Otherwise, the nonlinear equations ares solved by a /// Newton-Raphson scheme. /// May throw an exception if the number of iterations /// exceed maxiter (set in constructor). void IncompTpfaPolymer::solve(const double dt, PolymerState& state, WellState& well_state) { c_ = &state.getCellData( state.CONCENTRATION ); cmax_ = &state.getCellData( state.CMAX) ; if (rock_comp_props_ != 0 && rock_comp_props_->isActive()) { solveRockComp(dt, state, well_state); } else { solveIncomp(dt, state, well_state); } } /// Compute per-solve dynamic properties. void IncompTpfaPolymer::computePerSolveDynamicData(const double /*dt*/, const SimulationDataContainer& state, const WellState& /*well_state*/) { // Computed here: // // std::vector wdp_; // std::vector totmob_; // std::vector omega_; // std::vector trans_; // std::vector gpress_omegaweighted_; // std::vector initial_porevol_; // ifs_tpfa_forces forces_; // The only difference from IncompTpfa::computePerSolveDynamicData() is that // we call the polymer-aware versions of the computeTotalMobility*() functions. // wdp_ if (wells_) { Opm::computeWDP(*wells_, grid_, state.saturation(), props_.density(), gravity_ ? gravity_[2] : 0.0, true, wdp_); } // totmob_, omega_, gpress_omegaweighted_ if (gravity_) { computeTotalMobilityOmega(props_, poly_props_, allcells_, state.saturation(), *c_, *cmax_, totmob_, omega_); mim_ip_density_update(grid_.number_of_cells, grid_.cell_facepos, &omega_[0], &gpress_[0], &gpress_omegaweighted_[0]); } else { computeTotalMobility(props_, poly_props_, allcells_, state.saturation(), *c_, *cmax_, totmob_); } // trans_ tpfa_eff_trans_compute(const_cast(&grid_), &totmob_[0], &htrans_[0], &trans_[0]); // initial_porevol_ if (rock_comp_props_ && rock_comp_props_->isActive()) { computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), initial_porevol_); } // forces_ forces_.src = src_.empty() ? NULL : &src_[0]; forces_.bc = bcs_; forces_.W = wells_; forces_.totmob = &totmob_[0]; forces_.wdp = wdp_.empty() ? NULL : &wdp_[0]; } } // namespace Opm