/* Copyright 2020 Equinor ASA This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_OPENCLSOLVER_BACKEND_HEADER_INCLUDED #define OPM_OPENCLSOLVER_BACKEND_HEADER_INCLUDED #include #include #include #include #include #include namespace Opm { namespace Accelerator { /// This class implements a opencl-based ilu0-bicgstab solver on GPU template class openclSolverBackend : public BdaSolver { typedef BdaSolver Base; using Base::N; using Base::Nb; using Base::nnz; using Base::nnzb; using Base::verbosity; using Base::platformID; using Base::deviceID; using Base::maxit; using Base::tolerance; using Base::initialized; private: double *h_b = nullptr; // b vector, on host std::vector vals_contiguous; // only used if COPY_ROW_BY_ROW is true in openclSolverBackend.cpp // OpenCL variables must be reusable, they are initialized in initialize() cl::Buffer d_Avals, d_Acols, d_Arows; // (reordered) matrix in BSR format on GPU cl::Buffer d_x, d_b, d_rb, d_r, d_rw, d_p; // vectors, used during linear solve cl::Buffer d_pw, d_s, d_t, d_v; // vectors, used during linear solve cl::Buffer d_tmp; // used as tmp GPU buffer for dot() and norm() cl::Buffer d_toOrder; // only used when reordering is used std::vector devices; bool useJacMatrix = false; std::unique_ptr > prec; // can perform blocked ILU0 and AMG on pressure component bool is_root; // allow for nested solvers, the root solver is called by BdaBridge int *toOrder = nullptr, *fromOrder = nullptr; // BILU0 reorders rows of the matrix via these mappings bool analysis_done = false; std::shared_ptr mat = nullptr; // original matrix std::shared_ptr jacMat = nullptr; // matrix for preconditioner BlockedMatrix *rmat = nullptr; // reordered matrix (or original if no reordering), used for spmv ILUReorder opencl_ilu_reorder; // reordering strategy std::vector events; cl_int err; /// Divide A by B, and round up: return (int)ceil(A/B) /// \param[in] A dividend /// \param[in] B divisor /// \return rounded division result unsigned int ceilDivision(const unsigned int A, const unsigned int B); /// Calculate dot product between in1 and in2, partial sums are stored in out, which are summed on CPU /// \param[in] in1 input vector 1 /// \param[in] in2 input vector 2 /// \param[out] out output vector containing partial sums /// \return dot product double dot_w(cl::Buffer in1, cl::Buffer in2, cl::Buffer out); /// Calculate the norm of in, partial sums are stored in out, which are summed on the CPU /// Equal to Dune::DenseVector::two_norm() /// \param[in] in input vector /// \param[out] out output vector containing partial sums /// \return norm double norm_w(cl::Buffer in, cl::Buffer out); /// Perform axpy: out += a * in /// \param[in] in input vector /// \param[in] a scalar value to multiply input vector /// \param[inout] out output vector void axpy_w(cl::Buffer in, const double a, cl::Buffer out); /// Perform scale: vec *= a /// \param[inout] vec vector to scale /// \param[in] a scalar value to multiply vector void scale_w(cl::Buffer vec, const double a); /// Custom function that combines scale, axpy and add functions in bicgstab /// p = (p - omega * v) * beta + r /// \param[inout] p output vector /// \param[in] v input vector /// \param[in] r input vector /// \param[in] omega scalar value /// \param[in] beta scalar value void custom_w(cl::Buffer p, cl::Buffer v, cl::Buffer r, const double omega, const double beta); /// Sparse matrix-vector multiply, spmv /// b = A * x /// Matrix A, must be in BCRS format /// \param[in] vals nnzs of matrix A /// \param[in] cols columnindices of matrix A /// \param[in] rows rowpointers of matrix A /// \param[in] x input vector /// \param[out] b output vector void spmv_blocked_w(cl::Buffer vals, cl::Buffer cols, cl::Buffer rows, cl::Buffer x, cl::Buffer b); /// Solve linear system using ilu0-bicgstab /// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A /// \param[inout] res summary of solver result void gpu_pbicgstab(WellContributions& wellContribs, BdaResult& res); /// Initialize GPU and allocate memory /// \param[in] matrix matrix A /// \param[in] jacMatrix matrix for preconditioner void initialize(std::shared_ptr matrix, std::shared_ptr jacMatrix); /// Clean memory void finalize(); /// Copy linear system to GPU void copy_system_to_gpu(); /// Reorder the linear system so it corresponds with the coloring /// \param[in] vals array of nonzeroes, each block is stored row-wise and contiguous, contains nnz values /// \param[in] b input vectors, contains N values /// \param[out] wellContribs WellContributions, to set reordering void update_system(double *vals, double *b, WellContributions &wellContribs); /// Update linear system on GPU, don't copy rowpointers and colindices, they stay the same void update_system_on_gpu(); /// Analyze sparsity pattern to extract parallelism /// \return true iff analysis was successful bool analyze_matrix(); /// Perform ilu0-decomposition /// \return true iff decomposition was successful bool create_preconditioner(); /// Solve linear system /// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A /// \param[inout] res summary of solver result void solve_system(WellContributions &wellContribs, BdaResult &res); public: std::shared_ptr context; std::shared_ptr queue; /// Construct a openclSolver /// \param[in] linear_solver_verbosity verbosity of openclSolver /// \param[in] maxit maximum number of iterations for openclSolver /// \param[in] tolerance required relative tolerance for openclSolver /// \param[in] platformID the OpenCL platform to be used /// \param[in] deviceID the device to be used /// \param[in] opencl_ilu_reorder select either level_scheduling or graph_coloring, see Reorder.hpp for explanation /// \param[in] linsolver indicating the preconditioner, equal to the --linear-solver cmdline argument /// only ilu0, cpr_quasiimpes and isai are supported openclSolverBackend(int linear_solver_verbosity, int maxit, double tolerance, unsigned int platformID, unsigned int deviceID, ILUReorder opencl_ilu_reorder, std::string linsolver); /// For the CPR coarse solver openclSolverBackend(int linear_solver_verbosity, int maxit, double tolerance, ILUReorder opencl_ilu_reorder); /// Solve linear system, A*x = b, matrix A must be in blocked-CSR format /// \param[in] matrix matrix A /// \param[in] b input vector, contains N values /// \param[in] jacMatrix matrix for preconditioner /// \param[in] wellContribs WellContributions, to apply them separately, instead of adding them to matrix A /// \param[inout] res summary of solver result /// \return status code SolverStatus solve_system(std::shared_ptr matrix, double *b, std::shared_ptr jacMatrix, WellContributions& wellContribs, BdaResult &res) override; /// Solve scalar linear system, for example a coarse system of an AMG preconditioner /// Data is already on the GPU // SolverStatus solve_system(BdaResult &res); /// Get result after linear solve, and peform postprocessing if necessary /// \param[inout] x resulting x vector, caller must guarantee that x points to a valid array void get_result(double *x) override; /// Set OpenCL objects /// This class either creates them based on platformID and deviceID or receives them through this function /// \param[in] context the opencl context to be used /// \param[in] queue the opencl queue to be used void setOpencl(std::shared_ptr& context, std::shared_ptr& queue); }; // end class openclSolverBackend } // namespace Accelerator } // namespace Opm #endif