/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { WellInterfaceGeneric::WellInterfaceGeneric(const Well& well, const ParallelWellInfo& pw_info, const int time_step, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const std::vector& perf_data) : well_ecl_(well) , parallel_well_info_(pw_info) , current_step_(time_step) , pvtRegionIdx_(pvtRegionIdx) , num_components_(num_components) , number_of_phases_(num_phases) , index_of_well_(index_of_well) , perf_data_(&perf_data) , ipr_a_(num_components) , ipr_b_(num_components) { assert(well.name()==pw_info.name()); assert(std::is_sorted(perf_data.begin(), perf_data.end(), [](const auto& perf1, const auto& perf2){ return perf1.ecl_index < perf2.ecl_index; })); if (time_step < 0) { OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface"); } ref_depth_ = well.getRefDepth(); // We do not want to count SHUT perforations here, so // it would be wrong to use wells.getConnections().size(). number_of_perforations_ = perf_data.size(); // perforations related { well_cells_.resize(number_of_perforations_); well_index_.resize(number_of_perforations_); saturation_table_number_.resize(number_of_perforations_); int perf = 0; for (const auto& pd : perf_data) { well_cells_[perf] = pd.cell_index; well_index_[perf] = pd.connection_transmissibility_factor; saturation_table_number_[perf] = pd.satnum_id; ++perf; } } // initialization of the completions mapping initCompletions(); well_efficiency_factor_ = 1.0; this->wellStatus_ = Well::Status::OPEN; if (well.getStatus() == Well::Status::STOP) { this->wellStatus_ = Well::Status::STOP; } wsolvent_ = 0.0; well_control_log_.clear(); } // Currently the VFP calculations requires three-phase input data, see // the documentation for keyword VFPPROD and its implementation in // VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy // value in VFPPROD record 5 (GFR values) and supplying a dummy input value // for the gas rate to the methods in VFPProdProperties.cpp, we can extend // the VFP calculations to the two-phase oil-water case. void WellInterfaceGeneric::adaptRatesForVFP(std::vector& rates) const { const auto& pu = this->phaseUsage(); if (pu.num_phases == 2) { if ( pu.phase_used[BlackoilPhases::Aqua] == 1 && pu.phase_used[BlackoilPhases::Liquid] == 1 && pu.phase_used[BlackoilPhases::Vapour] == 0) { assert(rates.size() == 2); rates.push_back(0.0); // set gas rate to zero } else { throw std::logic_error("Two-phase VFP calculation only " "supported for oil and water"); } } } const std::vector& WellInterfaceGeneric::perforationData() const { return *perf_data_; } const std::string& WellInterfaceGeneric::name() const { return well_ecl_.name(); } bool WellInterfaceGeneric::isInjector() const { return well_ecl_.isInjector(); } bool WellInterfaceGeneric::isProducer() const { return well_ecl_.isProducer(); } int WellInterfaceGeneric::indexOfWell() const { return index_of_well_; } bool WellInterfaceGeneric::getAllowCrossFlow() const { return well_ecl_.getAllowCrossFlow(); } const Well& WellInterfaceGeneric::wellEcl() const { return well_ecl_; } const PhaseUsage& WellInterfaceGeneric::phaseUsage() const { assert(phase_usage_ != nullptr); return *phase_usage_; } double WellInterfaceGeneric::wsolvent() const { return wsolvent_; } double WellInterfaceGeneric::rsRvInj() const { return well_ecl_.getInjectionProperties().rsRvInj; } bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const { if (dynamic_thp_limit_) { return true; } return WellBhpThpCalculator(*this).wellHasTHPConstraints(summaryState); } void WellInterfaceGeneric::updateWellTestState(const SingleWellState& ws, const double& simulationTime, const bool& writeMessageToOPMLog, WellTestState& wellTestState, DeferredLogger& deferred_logger) const { // updating well test state based on Economic limits for operable wells if (this->isOperableAndSolvable()) { WellTest(*this).updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); } else { // updating well test state based on physical (THP/BHP) limits. WellTest(*this).updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); } // TODO: well can be shut/closed due to other reasons } double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const { if (dynamic_thp_limit_) { return *dynamic_thp_limit_; } return WellBhpThpCalculator(*this).getTHPConstraint(summaryState); } bool WellInterfaceGeneric::underPredictionMode() const { return well_ecl_.predictionMode(); } void WellInterfaceGeneric::initCompletions() { assert(completions_.empty() ); const WellConnections& connections = well_ecl_.getConnections(); const std::size_t num_conns = connections.size(); int num_active_connections = 0; auto my_next_perf = perf_data_->begin(); for (std::size_t c = 0; c < num_conns; ++c) { if (my_next_perf == perf_data_->end()) { break; } if (my_next_perf->ecl_index > c) { continue; } assert(my_next_perf->ecl_index == c); if (connections[c].state() == Connection::State::OPEN) { completions_[connections[c].complnum()].push_back(num_active_connections++); } ++my_next_perf; } assert(my_next_perf == perf_data_->end()); } void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState) { const auto& connections = well_ecl_.getConnections(); int perfIdx = 0; for (const auto& connection : connections) { if (connection.state() == Connection::State::OPEN) { if (wellTestState.completion_is_closed(name(), connection.complnum())) { this->well_index_[perfIdx] = 0.0; } perfIdx++; } } } void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg) { vfp_properties_ = vfp_properties_arg; } void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg) { guide_rate_ = guide_rate_arg; } void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor) { well_efficiency_factor_ = efficiency_factor; } void WellInterfaceGeneric::setRepRadiusPerfLength() { const int nperf = number_of_perforations_; perf_rep_radius_.clear(); perf_length_.clear(); bore_diameters_.clear(); perf_rep_radius_.reserve(nperf); perf_length_.reserve(nperf); bore_diameters_.reserve(nperf); const WellConnections& connections = well_ecl_.getConnections(); const std::size_t num_conns = connections.size(); int num_active_connections = 0; auto my_next_perf = perf_data_->begin(); for (std::size_t c = 0; c < num_conns; ++c) { if (my_next_perf == perf_data_->end()) { break; } if (my_next_perf->ecl_index > c) { continue; } assert(my_next_perf->ecl_index == c); const auto& connection = connections[c]; if (connection.state() == Connection::State::OPEN) { double radius = connection.rw(); double re = connection.re(); // area equivalent radius of the grid block double perf_length = connection.connectionLength(); // the length of the well perforation const double repR = std::sqrt(re * radius); perf_rep_radius_.push_back(repR); perf_length_.push_back(perf_length); bore_diameters_.push_back(2. * radius); num_active_connections++; } ++my_next_perf; } assert(my_next_perf == perf_data_->end()); assert(num_active_connections == nperf); } void WellInterfaceGeneric::setWsolvent(const double wsolvent) { wsolvent_ = wsolvent; } void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit) { dynamic_thp_limit_ = thp_limit; } std::optional WellInterfaceGeneric::getDynamicThpLimit() const { return dynamic_thp_limit_; } void WellInterfaceGeneric::updatePerforatedCell(std::vector& is_cell_perforated) { for (int perf_idx = 0; perf_idxgetProd()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specified," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } else { // injector const int table_id = well_ecl_.vfp_table_number(); if (table_id <= 0) { return false; } else { if (vfp_properties_->getInj()->hasTable(table_id)) { return true; } else { OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specified," << " for well " << name() << ", while we could not access it during simulation", deferred_logger); } } } } bool WellInterfaceGeneric::isOperableAndSolvable() const { return operability_status_.isOperableAndSolvable(); } bool WellInterfaceGeneric::useVfpExplicit() const { const auto& wvfpexp = well_ecl_.getWVFPEXP(); return ((wvfpexp.explicit_lookup() && !changedToOpenThisStep())|| operability_status_.use_vfpexplicit); } bool WellInterfaceGeneric::thpLimitViolatedButNotSwitched() const { return operability_status_.thp_limit_violated_but_not_switched; } double WellInterfaceGeneric::getALQ(const WellState& well_state) const { return well_state.getALQ(name()); } void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const { if (well_control_log_.empty()) return; std::string from = well_control_log_[0]; std::string to; if (isInjector()) { to = Well::InjectorCMode2String(ws.injection_cmode); } else { to = Well::ProducerCMode2String(ws.production_cmode); } // only report the final switching if (from != to) { std::string msg = " Well " + name() + " control mode changed from " + from + " to " + to; deferred_logger.info(msg); } } } // namespace Opm