/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
WellInterfaceGeneric::WellInterfaceGeneric(const Well& well,
const ParallelWellInfo& pw_info,
const int time_step,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector& perf_data)
: well_ecl_(well)
, parallel_well_info_(pw_info)
, current_step_(time_step)
, pvtRegionIdx_(pvtRegionIdx)
, num_components_(num_components)
, number_of_phases_(num_phases)
, index_of_well_(index_of_well)
, perf_data_(&perf_data)
, ipr_a_(num_components)
, ipr_b_(num_components)
{
assert(well.name()==pw_info.name());
assert(std::is_sorted(perf_data.begin(), perf_data.end(),
[](const auto& perf1, const auto& perf2){
return perf1.ecl_index < perf2.ecl_index;
}));
if (time_step < 0) {
OPM_THROW(std::invalid_argument, "Negtive time step is used to construct WellInterface");
}
ref_depth_ = well.getRefDepth();
// We do not want to count SHUT perforations here, so
// it would be wrong to use wells.getConnections().size().
number_of_perforations_ = perf_data.size();
// perforations related
{
well_cells_.resize(number_of_perforations_);
well_index_.resize(number_of_perforations_);
saturation_table_number_.resize(number_of_perforations_);
int perf = 0;
for (const auto& pd : perf_data) {
well_cells_[perf] = pd.cell_index;
well_index_[perf] = pd.connection_transmissibility_factor;
saturation_table_number_[perf] = pd.satnum_id;
++perf;
}
}
// initialization of the completions mapping
initCompletions();
well_efficiency_factor_ = 1.0;
this->wellStatus_ = Well::Status::OPEN;
if (well.getStatus() == Well::Status::STOP) {
this->wellStatus_ = Well::Status::STOP;
}
wsolvent_ = 0.0;
well_control_log_.clear();
}
// Currently the VFP calculations requires three-phase input data, see
// the documentation for keyword VFPPROD and its implementation in
// VFPProdProperties.cpp. However, by setting the gas flow rate to a dummy
// value in VFPPROD record 5 (GFR values) and supplying a dummy input value
// for the gas rate to the methods in VFPProdProperties.cpp, we can extend
// the VFP calculations to the two-phase oil-water case.
void WellInterfaceGeneric::adaptRatesForVFP(std::vector& rates) const
{
const auto& pu = this->phaseUsage();
if (pu.num_phases == 2) {
if ( pu.phase_used[BlackoilPhases::Aqua] == 1
&& pu.phase_used[BlackoilPhases::Liquid] == 1
&& pu.phase_used[BlackoilPhases::Vapour] == 0)
{
assert(rates.size() == 2);
rates.push_back(0.0); // set gas rate to zero
}
else {
throw std::logic_error("Two-phase VFP calculation only "
"supported for oil and water");
}
}
}
const std::vector& WellInterfaceGeneric::perforationData() const
{
return *perf_data_;
}
const std::string& WellInterfaceGeneric::name() const
{
return well_ecl_.name();
}
bool WellInterfaceGeneric::isInjector() const
{
return well_ecl_.isInjector();
}
bool WellInterfaceGeneric::isProducer() const
{
return well_ecl_.isProducer();
}
int WellInterfaceGeneric::indexOfWell() const
{
return index_of_well_;
}
bool WellInterfaceGeneric::getAllowCrossFlow() const
{
return well_ecl_.getAllowCrossFlow();
}
const Well& WellInterfaceGeneric::wellEcl() const
{
return well_ecl_;
}
const PhaseUsage& WellInterfaceGeneric::phaseUsage() const
{
assert(phase_usage_ != nullptr);
return *phase_usage_;
}
double WellInterfaceGeneric::wsolvent() const
{
return wsolvent_;
}
double WellInterfaceGeneric::rsRvInj() const
{
return well_ecl_.getInjectionProperties().rsRvInj;
}
bool WellInterfaceGeneric::wellHasTHPConstraints(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return true;
}
return WellBhpThpCalculator(*this).wellHasTHPConstraints(summaryState);
}
void WellInterfaceGeneric::updateWellTestState(const SingleWellState& ws,
const double& simulationTime,
const bool& writeMessageToOPMLog,
WellTestState& wellTestState,
DeferredLogger& deferred_logger) const
{
// updating well test state based on Economic limits for operable wells
if (this->isOperableAndSolvable()) {
WellTest(*this).updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
} else {
// updating well test state based on physical (THP/BHP) limits.
WellTest(*this).updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger);
}
// TODO: well can be shut/closed due to other reasons
}
double WellInterfaceGeneric::getTHPConstraint(const SummaryState& summaryState) const
{
if (dynamic_thp_limit_) {
return *dynamic_thp_limit_;
}
return WellBhpThpCalculator(*this).getTHPConstraint(summaryState);
}
bool WellInterfaceGeneric::underPredictionMode() const
{
return well_ecl_.predictionMode();
}
void WellInterfaceGeneric::initCompletions()
{
assert(completions_.empty() );
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
if (connections[c].state() == Connection::State::OPEN) {
completions_[connections[c].complnum()].push_back(num_active_connections++);
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
}
void WellInterfaceGeneric::closeCompletions(const WellTestState& wellTestState)
{
const auto& connections = well_ecl_.getConnections();
int perfIdx = 0;
for (const auto& connection : connections) {
if (connection.state() == Connection::State::OPEN) {
if (wellTestState.completion_is_closed(name(), connection.complnum())) {
this->well_index_[perfIdx] = 0.0;
}
perfIdx++;
}
}
}
void WellInterfaceGeneric::setVFPProperties(const VFPProperties* vfp_properties_arg)
{
vfp_properties_ = vfp_properties_arg;
}
void WellInterfaceGeneric::setGuideRate(const GuideRate* guide_rate_arg)
{
guide_rate_ = guide_rate_arg;
}
void WellInterfaceGeneric::setWellEfficiencyFactor(const double efficiency_factor)
{
well_efficiency_factor_ = efficiency_factor;
}
void WellInterfaceGeneric::setRepRadiusPerfLength()
{
const int nperf = number_of_perforations_;
perf_rep_radius_.clear();
perf_length_.clear();
bore_diameters_.clear();
perf_rep_radius_.reserve(nperf);
perf_length_.reserve(nperf);
bore_diameters_.reserve(nperf);
const WellConnections& connections = well_ecl_.getConnections();
const std::size_t num_conns = connections.size();
int num_active_connections = 0;
auto my_next_perf = perf_data_->begin();
for (std::size_t c = 0; c < num_conns; ++c) {
if (my_next_perf == perf_data_->end())
{
break;
}
if (my_next_perf->ecl_index > c)
{
continue;
}
assert(my_next_perf->ecl_index == c);
const auto& connection = connections[c];
if (connection.state() == Connection::State::OPEN) {
double radius = connection.rw();
double re = connection.re(); // area equivalent radius of the grid block
double perf_length = connection.connectionLength(); // the length of the well perforation
const double repR = std::sqrt(re * radius);
perf_rep_radius_.push_back(repR);
perf_length_.push_back(perf_length);
bore_diameters_.push_back(2. * radius);
num_active_connections++;
}
++my_next_perf;
}
assert(my_next_perf == perf_data_->end());
assert(num_active_connections == nperf);
}
void WellInterfaceGeneric::setWsolvent(const double wsolvent)
{
wsolvent_ = wsolvent;
}
void WellInterfaceGeneric::setDynamicThpLimit(const double thp_limit)
{
dynamic_thp_limit_ = thp_limit;
}
std::optional WellInterfaceGeneric::getDynamicThpLimit() const
{
return dynamic_thp_limit_;
}
void WellInterfaceGeneric::updatePerforatedCell(std::vector& is_cell_perforated)
{
for (int perf_idx = 0; perf_idxgetProd()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPPROD table " << std::to_string(table_id) << " is specified,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
} else { // injector
const int table_id = well_ecl_.vfp_table_number();
if (table_id <= 0) {
return false;
} else {
if (vfp_properties_->getInj()->hasTable(table_id)) {
return true;
} else {
OPM_DEFLOG_THROW(std::runtime_error, "VFPINJ table " << std::to_string(table_id) << " is specified,"
<< " for well " << name() << ", while we could not access it during simulation", deferred_logger);
}
}
}
}
bool WellInterfaceGeneric::isOperableAndSolvable() const
{
return operability_status_.isOperableAndSolvable();
}
bool WellInterfaceGeneric::useVfpExplicit() const
{
const auto& wvfpexp = well_ecl_.getWVFPEXP();
return ((wvfpexp.explicit_lookup() && !changedToOpenThisStep())|| operability_status_.use_vfpexplicit);
}
bool WellInterfaceGeneric::thpLimitViolatedButNotSwitched() const
{
return operability_status_.thp_limit_violated_but_not_switched;
}
double WellInterfaceGeneric::getALQ(const WellState& well_state) const
{
return well_state.getALQ(name());
}
void WellInterfaceGeneric::reportWellSwitching(const SingleWellState& ws, DeferredLogger& deferred_logger) const
{
if (well_control_log_.empty())
return;
std::string from = well_control_log_[0];
std::string to;
if (isInjector()) {
to = Well::InjectorCMode2String(ws.injection_cmode);
} else {
to = Well::ProducerCMode2String(ws.production_cmode);
}
// only report the final switching
if (from != to) {
std::string msg = " Well " + name()
+ " control mode changed from " + from + " to " + to;
deferred_logger.info(msg);
}
}
} // namespace Opm