/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include // Helper structs and functions for the implementation. namespace { struct WellData { well_type type; control_type control; double target; double reference_bhp_depth; surface_component injected_phase; }; struct PerfData { int cell; double well_index; }; int prod_control_mode(const std::string& control) { const int num_prod_control_modes = 8; static std::string prod_control_modes[num_prod_control_modes] = {std::string("ORAT"), std::string("WRAT"), std::string("GRAT"), std::string("LRAT"), std::string("RESV"), std::string("BHP"), std::string("THP"), std::string("GRUP") }; int m = -1; for (int i=0; i= 0) { return m; } else { THROW("Unknown well control mode = " << control << " in input file"); } } int inje_control_mode(const std::string& control) { const int num_inje_control_modes = 5; static std::string inje_control_modes[num_inje_control_modes] = {std::string("RATE"), std::string("RESV"), std::string("BHP"), std::string("THP"), std::string("GRUP") }; int m = -1; for (int i=0; i= 0) { return m; } else { THROW("Unknown well control mode = " << control << " in input file"); } } std::tr1::array getCubeDim(const UnstructuredGrid& grid, int cell) { using namespace std; tr1::array cube; int num_local_faces = grid.cell_facepos[cell + 1] - grid.cell_facepos[cell]; vector x(num_local_faces); vector y(num_local_faces); vector z(num_local_faces); for (int lf=0; lf& cubical, const double* cell_permeability, const double skin_factor) { using namespace std; // sse: Using the Peaceman model. // NOTE: The formula is valid for cartesian grids, so the result can be a bit // (in worst case: there is no upper bound for the error) off the mark. const double permx = cell_permeability[0]; const double permy = cell_permeability[3*1 + 1]; double effective_perm = sqrt(permx*permy); // sse: The formula for r_0 can be found on page 39 of // "Well Models for Mimetic Finite Differerence Methods and Improved Representation // of Wells in Multiscale Methods" by Ingeborg Skjelkvåle Ligaarden. assert(permx > 0.0); assert(permy > 0.0); double kxoy = permx / permy; double kyox = permy / permx; double r0_denominator = pow(kyox, 0.25) + pow(kxoy, 0.25); double r0_numerator = sqrt((sqrt(kyox)*cubical[0]*cubical[0]) + (sqrt(kxoy)*cubical[1]*cubical[1])); assert(r0_denominator > 0.0); double r0 = 0.28 * r0_numerator / r0_denominator; assert(radius > 0.0); assert(r0 > 0.0); if (r0 < radius) { std::cout << "ERROR: Too big well radius detected."; std::cout << "Specified well radius is " << radius << " while r0 is " << r0 << ".\n"; } const long double two_pi = 6.2831853071795864769252867665590057683943387987502116419498; double wi_denominator = log(r0 / radius) + skin_factor; double wi_numerator = two_pi * cubical[2]; assert(wi_denominator > 0.0); double wi = effective_perm * wi_numerator / wi_denominator; assert(wi > 0.0); return wi; } } // anonymous namespace namespace Opm { /// Construct wells from deck. WellsManager::WellsManager(const Opm::EclipseGridParser& deck, const UnstructuredGrid& grid, const double* permeability) : w_(0) { if (grid.dimensions != 3) { THROW("We cannot initialize wells from a deck unless the corresponding grid is 3-dimensional."); } // NOTE: Implementation copied and modified from dune-porsol's class BlackoilWells. std::vector keywords; keywords.push_back("WELSPECS"); keywords.push_back("COMPDAT"); // keywords.push_back("WELTARG"); if (!deck.hasFields(keywords)) { MESSAGE("Missing well keywords in deck, initializing no wells."); return; } if (!(deck.hasField("WCONINJE") || deck.hasField("WCONPROD")) ) { THROW("Needed field is missing in file"); } // These data structures will be filled in this constructor, // then used to initialize the Wells struct. std::vector well_names; std::vector well_data; std::vector > wellperf_data; // Get WELSPECS data const WELSPECS& welspecs = deck.getWELSPECS(); const int num_wells = welspecs.welspecs.size(); well_names.reserve(num_wells); well_data.reserve(num_wells); wellperf_data.resize(num_wells); for (int w = 0; w < num_wells; ++w) { well_names.push_back(welspecs.welspecs[w].name_); WellData wd; well_data.push_back(wd); well_data.back().reference_bhp_depth = welspecs.welspecs[w].datum_depth_BHP_; if (welspecs.welspecs[w].datum_depth_BHP_ < 0.0) { // Set refdepth to a marker value, will be changed // after getting perforation data to the centroid of // the cell of the top well perforation. well_data.back().reference_bhp_depth = -1e100; } } // global_cell is a map from compressed cells to Cartesian grid cells. // We must make the inverse lookup. const int* global_cell = grid.global_cell; const int* cpgdim = grid.cartdims; std::map cartesian_to_compressed; for (int i = 0; i < grid.number_of_cells; ++i) { cartesian_to_compressed.insert(std::make_pair(global_cell[i], i)); } // Get COMPDAT data const COMPDAT& compdat = deck.getCOMPDAT(); const int num_compdat = compdat.compdat.size(); for (int kw = 0; kw < num_compdat; ++kw) { // Extract well name, or the part of the well name that // comes before the '*'. std::string name = compdat.compdat[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } // Look for well with matching name. bool found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { // equal // We have a matching name. int ix = compdat.compdat[kw].grid_ind_[0] - 1; int jy = compdat.compdat[kw].grid_ind_[1] - 1; int kz1 = compdat.compdat[kw].grid_ind_[2] - 1; int kz2 = compdat.compdat[kw].grid_ind_[3] - 1; for (int kz = kz1; kz <= kz2; ++kz) { int cart_grid_indx = ix + cpgdim[0]*(jy + cpgdim[1]*kz); std::map::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx); if (cgit == cartesian_to_compressed.end()) { THROW("Cell with i,j,k indices " << ix << ' ' << jy << ' ' << kz << " not found in grid!"); } int cell = cgit->second; PerfData pd; pd.cell = cell; if (compdat.compdat[kw].connect_trans_fac_ > 0.0) { pd.well_index = compdat.compdat[kw].connect_trans_fac_; } else { double radius = 0.5*compdat.compdat[kw].diameter_; if (radius <= 0.0) { radius = 0.5*unit::feet; MESSAGE("**** Warning: Well bore internal radius set to " << radius); } std::tr1::array cubical = getCubeDim(grid, cell); const double* cell_perm = &permeability[grid.dimensions*grid.dimensions*cell]; pd.well_index = computeWellIndex(radius, cubical, cell_perm, compdat.compdat[kw].skin_factor_); } wellperf_data[wix].push_back(pd); } found = true; break; } } if (!found) { THROW("Undefined well name: " << compdat.compdat[kw].well_ << " in COMPDAT"); } } // Set up reference depths that were defaulted. Count perfs. int num_perfs = 0; for (int w = 0; w < num_wells; ++w) { num_perfs += wellperf_data[w].size(); if (well_data[w].reference_bhp_depth == -1e100) { // It was defaulted. Set reference depth to minimum perforation depth. double min_depth = 1e100; int num_wperfs = wellperf_data[w].size(); for (int perf = 0; perf < num_wperfs; ++perf) { double depth = grid.cell_centroids[3*wellperf_data[w][perf].cell + 2]; min_depth = std::min(min_depth, depth); } well_data[w].reference_bhp_depth = min_depth; } } // Get WCONINJE data if (deck.hasField("WCONINJE")) { const WCONINJE& wconinjes = deck.getWCONINJE(); const int num_wconinjes = wconinjes.wconinje.size(); for (int kw = 0; kw < num_wconinjes; ++kw) { // Extract well name, or the part of the well name that // comes before the '*'. std::string name = wconinjes.wconinje[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; well_data[wix].type = INJECTOR; int m = inje_control_mode(wconinjes.wconinje[kw].control_mode_); switch(m) { case 0: // RATE well_data[wix].control = RATE; well_data[wix].target = wconinjes.wconinje[kw].surface_flow_max_rate_; break; case 1: // RESV well_data[wix].control = RATE; well_data[wix].target = wconinjes.wconinje[kw].fluid_volume_max_rate_; break; case 2: // BHP well_data[wix].control = BHP; well_data[wix].target = wconinjes.wconinje[kw].BHP_limit_; break; case 3: // THP well_data[wix].control = BHP; well_data[wix].target = wconinjes.wconinje[kw].THP_limit_; break; default: THROW("Unknown well control mode; WCONIJE = " << wconinjes.wconinje[kw].control_mode_ << " in input file"); } if (wconinjes.wconinje[kw].injector_type_ == "WATER") { well_data[wix].injected_phase = WATER; } else if (wconinjes.wconinje[kw].injector_type_ == "OIL") { well_data[wix].injected_phase = OIL; } else if (wconinjes.wconinje[kw].injector_type_ == "GAS") { well_data[wix].injected_phase = GAS; } else { THROW("Error in injector specification, found no known fluid type."); } } } if (!well_found) { THROW("Undefined well name: " << wconinjes.wconinje[kw].well_ << " in WCONINJE"); } } } // Get WCONPROD data if (deck.hasField("WCONPROD")) { const WCONPROD& wconprods = deck.getWCONPROD(); const int num_wconprods = wconprods.wconprod.size(); for (int kw = 0; kw < num_wconprods; ++kw) { std::string name = wconprods.wconprod[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; well_data[wix].type = PRODUCER; int m = prod_control_mode(wconprods.wconprod[kw].control_mode_); switch(m) { case 0: // ORAT well_data[wix].control = RATE; well_data[wix].target = wconprods.wconprod[kw].oil_max_rate_; break; case 1: // WRAT well_data[wix].control = RATE; well_data[wix].target = wconprods.wconprod[kw].water_max_rate_; break; case 2: // GRAT well_data[wix].control = RATE; well_data[wix].target = wconprods.wconprod[kw].gas_max_rate_; break; case 3: // LRAT well_data[wix].control = RATE; well_data[wix].target = wconprods.wconprod[kw].liquid_max_rate_; break; case 4: // RESV well_data[wix].control = RATE; well_data[wix].target = wconprods.wconprod[kw].fluid_volume_max_rate_; break; case 5: // BHP well_data[wix].control = BHP; well_data[wix].target = wconprods.wconprod[kw].BHP_limit_; break; case 6: // THP well_data[wix].control = BHP; well_data[wix].target = wconprods.wconprod[kw].THP_limit_; break; default: THROW("Unknown well control mode; WCONPROD = " << wconprods.wconprod[kw].control_mode_ << " in input file"); } } } if (!well_found) { THROW("Undefined well name: " << wconprods.wconprod[kw].well_ << " in WCONPROD"); } } } // Get WELTARG data if (deck.hasField("WELTARG")) { const WELTARG& weltargs = deck.getWELTARG(); const int num_weltargs = weltargs.weltarg.size(); for (int kw = 0; kw < num_weltargs; ++kw) { std::string name = weltargs.weltarg[kw].well_; std::string::size_type len = name.find('*'); if (len != std::string::npos) { name = name.substr(0, len); } bool well_found = false; for (int wix = 0; wix < num_wells; ++wix) { if (well_names[wix].compare(0,len, name) == 0) { //equal well_found = true; well_data[wix].target = weltargs.weltarg[kw].new_value_; break; } } if (!well_found) { THROW("Undefined well name: " << weltargs.weltarg[kw].well_ << " in WELTARG"); } } } // Debug output. #define EXTRA_OUTPUT #ifdef EXTRA_OUTPUT std::cout << "\t WELL DATA" << std::endl; for(int i = 0; i< num_wells; ++i) { std::cout << i << ": " << well_data[i].type << " " << well_data[i].control << " " << well_data[i].target << std::endl; } std::cout << "\n\t PERF DATA" << std::endl; for(int i=0; i< int(wellperf_data.size()); ++i) { for(int j=0; j< int(wellperf_data[i].size()); ++j) { std::cout << i << ": " << wellperf_data[i][j].cell << " " << wellperf_data[i][j].well_index << std::endl; } } #endif // Set up the Wells struct. w_ = wells_create(num_wells, num_perfs); if (!w_) { THROW("Failed creating Wells struct."); } double fracs[3][3] = { { 1.0, 0.0, 0.0 }, { 0.0, 1.0, 0.0 }, { 0.0, 0.0, 1.0 } }; for (int w = 0; w < num_wells; ++w) { int nperf = wellperf_data[w].size(); std::vector cells(nperf); std::vector wi(nperf); for (int perf = 0; perf < nperf; ++perf) { cells[perf] = wellperf_data[w][perf].cell; wi[perf] = wellperf_data[w][perf].well_index; } const double* zfrac = (well_data[w].type == INJECTOR) ? fracs[well_data[w].injected_phase] : 0; int ok = wells_add(well_data[w].type, well_data[w].reference_bhp_depth, nperf, zfrac, &cells[0], &wi[0], w_); if (!ok) { THROW("Failed to add a well."); } // We only append a single control at this point. // TODO: Handle multiple controls. ok = well_controls_append(well_data[w].control, well_data[w].target, w_->ctrls[w]); if (!ok) { THROW("Failed to add well controls."); } } } /// Destructor. WellsManager::~WellsManager() { wells_destroy(w_); } /// Access the managed Wells. /// The method is named similarly to c_str() in std::string, /// to make it clear that we are returning a C-compatible struct. const Wells* WellsManager::c_wells() const { return w_; } } // namespace Opm