/* Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2015 IRIS AS Copyright 2014 STATOIL ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_MAIN_HEADER_INCLUDED #define OPM_MAIN_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_DUNE_FEM #include #else #include #endif #if HAVE_MPI #include #endif #include #include #include #include #include #include #include #include #include namespace Opm::Properties { // this is a dummy type tag that is used to setup the parameters before the actual // simulator. namespace TTag { struct FlowEarlyBird { using InheritsFrom = std::tuple; }; } } // namespace Opm::Properties namespace Opm { namespace Action { class State; } class UDQState; class WellTestState; // ----------------- Main program ----------------- template int flowEbosMain(int argc, char** argv, bool outputCout, bool outputFiles) { // we always want to use the default locale, and thus spare us the trouble // with incorrect locale settings. resetLocale(); FlowMainEbos mainfunc(argc, argv, outputCout, outputFiles); return mainfunc.execute(); } // ----------------- Main class ----------------- // For now, we will either be instantiated from main() in flow.cpp, // or from a Python pybind11 module.. // NOTE (March 2020): When used from a pybind11 module, we do not neccessarily // want to run the whole simulation by calling run(), it is also // useful to just run one report step at a time. According to these different // usage scenarios, we refactored the original run() in flow.cpp into this class. class Main { public: Main(int argc, char** argv); // This constructor can be called from Python Main(const std::string& filename); // This constructor can be called from Python when Python has // already parsed a deck Main(const std::string& filename, std::shared_ptr eclipseState, std::shared_ptr schedule, std::shared_ptr summaryConfig); ~Main(); void setArgvArgc_(const std::string& filename); void initMPI(); int runDynamic() { int exitCode = EXIT_SUCCESS; if (isSimulationRank_) { if (initialize_(exitCode)) { return this->dispatchDynamic_(); } } return exitCode; } template int runStatic() { int exitCode = EXIT_SUCCESS; if (isSimulationRank_) { if (initialize_(exitCode)) { return this->dispatchStatic_(); } } return exitCode; } using FlowMainEbosType = FlowMainEbos; // To be called from the Python interface code. Only do the // initialization and then return a pointer to the FlowEbosMain // object that can later be accessed directly from the Python interface // to e.g. advance the simulator one report step std::unique_ptr initFlowEbosBlackoil(int& exitCode) { exitCode = EXIT_SUCCESS; if (initialize_(exitCode)) { // TODO: check that this deck really represents a blackoil // case. E.g. check that number of phases == 3 this->setupVanguard(); return flowEbosBlackoilTpfaMainInit( argc_, argv_, outputCout_, outputFiles_); } else { //NOTE: exitCode was set by initialize_() above; return std::unique_ptr(); // nullptr } } private: int dispatchDynamic_() { const auto& rspec = this->eclipseState_->runspec(); const auto& phases = rspec.phases(); this->setupVanguard(); // run the actual simulator // // TODO: make sure that no illegal combinations like thermal and // twophase are requested. const bool thermal = eclipseState_->getSimulationConfig().isThermal(); // Single-phase case if (rspec.micp()) { return this->runMICP(phases); } // water-only case else if (phases.size() == 1 && phases.active(Phase::WATER) && !thermal) { return this->runWaterOnly(phases); } // water-only case with energy else if (phases.size() == 2 && phases.active(Phase::WATER) && thermal) { return this->runWaterOnlyEnergy(phases); } // Twophase cases else if (phases.size() == 2 && !thermal) { return this->runTwoPhase(phases); } // Polymer case else if (phases.active(Phase::POLYMER)) { return this->runPolymer(phases); } // Foam case else if (phases.active(Phase::FOAM)) { return this->runFoam(); } // Brine case else if (phases.active(Phase::BRINE)) { return this->runBrine(phases); } // Solvent case else if (phases.active(Phase::SOLVENT)) { return this->runSolvent(); } // Extended BO case else if (phases.active(Phase::ZFRACTION)) { return this->runExtendedBlackOil(); } // Energy case else if (thermal) { return this->runThermal(phases); } // Blackoil case else if (phases.size() == 3) { return this->runBlackOil(); } else { if (outputCout_) { std::cerr << "No suitable configuration found, valid are " << "Twophase, polymer, foam, brine, solvent, " << "energy, and blackoil.\n"; } return EXIT_FAILURE; } } template int dispatchStatic_() { this->setupVanguard(); return flowEbosMain(argc_, argv_, outputCout_, outputFiles_); } /// \brief Initialize /// \param exitCode The exitCode of the program. /// /// \return Whether to actually run the simulator. I.e. true if /// parsing of command line was successful and no --help, /// --print-properties, or --print-parameters have been found. template bool initialize_(int& exitCode) { Dune::Timer externalSetupTimer; externalSetupTimer.start(); handleVersionCmdLine_(argc_, argv_, Opm::moduleVersionName()); // we always want to use the default locale, and thus spare us the trouble // with incorrect locale settings. resetLocale(); // this is a work-around for a catch 22: we do not know what code path to use without // parsing the deck, but we don't know the deck without having access to the // parameters and this requires to know the type tag to be used. To solve this, we // use a type tag just for parsing the parameters before we instantiate the actual // simulator object. (Which parses the parameters again, but since this is done in an // identical manner it does not matter.) typedef TypeTagEarlyBird PreTypeTag; using PreProblem = GetPropType; PreProblem::setBriefDescription("Flow, an advanced reservoir simulator for ECL-decks provided by the Open Porous Media project."); int status = FlowMainEbos::setupParameters_(argc_, argv_, EclGenericVanguard::comm()); if (status != 0) { // if setupParameters_ returns a value smaller than 0, there was no error, but // the program should abort. This is the case e.g. for the --help and the // --print-properties parameters. #if HAVE_MPI if (status >= 0) MPI_Abort(MPI_COMM_WORLD, status); #endif exitCode = (status > 0) ? status : EXIT_SUCCESS; return false; // Whether to run the simulator } std::string deckFilename; std::string outputDir; if ( eclipseState_ ) { deckFilename = eclipseState_->getIOConfig().fullBasePath(); outputDir = eclipseState_->getIOConfig().getOutputDir(); } else { deckFilename = EWOMS_GET_PARAM(PreTypeTag, std::string, EclDeckFileName); outputDir = EWOMS_GET_PARAM(PreTypeTag, std::string, OutputDir); } #if HAVE_DAMARIS enableDamarisOutput_ = EWOMS_GET_PARAM(PreTypeTag, bool, EnableDamarisOutput); if (enableDamarisOutput_) { this->setupDamaris(outputDir, EWOMS_GET_PARAM(PreTypeTag, bool, EnableDamarisOutputCollective)); } #endif // HAVE_DAMARIS int mpiRank = EclGenericVanguard::comm().rank(); outputCout_ = false; if (mpiRank == 0) outputCout_ = EWOMS_GET_PARAM(PreTypeTag, bool, EnableTerminalOutput); if (deckFilename.empty()) { if (mpiRank == 0) { std::cerr << "No input case given. Try '--help' for a usage description.\n"; } exitCode = EXIT_FAILURE; return false; } using PreVanguard = GetPropType; try { deckFilename = PreVanguard::canonicalDeckPath(deckFilename); } catch (const std::exception& e) { if ( mpiRank == 0 ) { std::cerr << "Exception received: " << e.what() << ". Try '--help' for a usage description.\n"; } #if HAVE_MPI MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE); #endif exitCode = EXIT_FAILURE; return false; } std::string cmdline_params; if (outputCout_) { printFlowBanner(EclGenericVanguard::comm().size(), getNumThreads(), Opm::moduleVersionName()); std::ostringstream str; Parameters::printValues(str); cmdline_params = str.str(); } // Create Deck and EclipseState. try { this->readDeck(deckFilename, outputDir, EWOMS_GET_PARAM(PreTypeTag, std::string, OutputMode), !EWOMS_GET_PARAM(PreTypeTag, bool, SchedRestart), EWOMS_GET_PARAM(PreTypeTag, bool, EnableLoggingFalloutWarning), EWOMS_GET_PARAM(PreTypeTag, std::string, ParsingStrictness), mpiRank, EWOMS_GET_PARAM(PreTypeTag, int, EclOutputInterval), cmdline_params, Opm::moduleVersion(), Opm::compileTimestamp()); setupTime_ = externalSetupTimer.elapsed(); } catch (const std::invalid_argument& e) { if (outputCout_) { std::cerr << "Failed to create valid EclipseState object." << std::endl; std::cerr << "Exception caught: " << e.what() << std::endl; } #if HAVE_MPI MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE); #endif exitCode = EXIT_FAILURE; return false; } exitCode = EXIT_SUCCESS; return true; } // This function is an extreme special case, if the program has been invoked // *exactly* as: // // flow --version // // the call is intercepted by this function which will print "flow $version" // on stdout and exit(0). void handleVersionCmdLine_(int argc, char** argv, std::string_view moduleVersionName); // This function is a special case, if the program has been invoked // with the argument "--test-split-communicator=true" as the FIRST // argument, it will be removed from the argument list and we set the // test_split_comm_ flag to true. // Note: initializing the parameter system before MPI could make this // use the parameter system instead. void handleTestSplitCommunicatorCmdLine_(); int runMICP(const Phases& phases) { if (!phases.active(Phase::WATER) || (phases.size() > 2)) { if (outputCout_) { std::cerr << "No valid configuration is found for MICP simulation, " << "the only valid option is water + MICP\n"; } return EXIT_FAILURE; } return flowEbosMICPMain(this->argc_, this->argv_, this->outputCout_, this->outputFiles_); } int runTwoPhase(const Phases& phases) { const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive(); const bool disgasw = eclipseState_->getSimulationConfig().hasDISGASW(); const bool vapwat = eclipseState_->getSimulationConfig().hasVAPWAT(); // oil-gas if (phases.active( Phase::OIL ) && phases.active( Phase::GAS )) { if (diffusive) { return flowEbosGasOilDiffuseMain(argc_, argv_, outputCout_, outputFiles_); } else { return flowEbosGasOilMain(argc_, argv_, outputCout_, outputFiles_); } } // oil-water else if ( phases.active( Phase::OIL ) && phases.active( Phase::WATER ) ) { if (diffusive) { if (outputCout_) { std::cerr << "The DIFFUSE option is not available for the two-phase water/oil model." << std::endl; } return EXIT_FAILURE; } return flowEbosOilWaterMain(argc_, argv_, outputCout_, outputFiles_); } // gas-water else if ( phases.active( Phase::GAS ) && phases.active( Phase::WATER ) ) { if (disgasw || vapwat) { if (diffusive) { return flowEbosGasWaterDissolutionDiffuseMain(argc_, argv_, outputCout_, outputFiles_); } return flowEbosGasWaterDissolutionMain(argc_, argv_, outputCout_, outputFiles_); } if (diffusive) { if (outputCout_) { std::cerr << "The DIFFUSE option is not available for the two-phase gas/water model without disgasw or vapwat." << std::endl; } return EXIT_FAILURE; } return flowEbosGasWaterMain(argc_, argv_, outputCout_, outputFiles_); } else { if (outputCout_) { std::cerr << "No suitable configuration found, valid are Twophase (oilwater, oilgas and gaswater), polymer, solvent, or blackoil" << std::endl; } return EXIT_FAILURE; } } int runPolymer(const Phases& phases) { if (! phases.active(Phase::WATER)) { if (outputCout_) std::cerr << "No valid configuration is found for polymer simulation, valid options include " << "oilwater + polymer and blackoil + polymer" << std::endl; return EXIT_FAILURE; } // Need to track the polymer molecular weight // for the injectivity study if (phases.active(Phase::POLYMW)) { // only oil water two phase for now assert (phases.size() == 4); return flowEbosOilWaterPolymerInjectivityMain(argc_, argv_, outputCout_, outputFiles_); } if (phases.size() == 3) { // oil water polymer case return flowEbosOilWaterPolymerMain(argc_, argv_, outputCout_, outputFiles_); } else { return flowEbosPolymerMain(argc_, argv_, outputCout_, outputFiles_); } } int runFoam() { return flowEbosFoamMain(argc_, argv_, outputCout_, outputFiles_); } int runWaterOnly(const Phases& phases) { if (!phases.active(Phase::WATER) || phases.size() != 1) { if (outputCout_) std::cerr << "No valid configuration is found for water-only simulation, valid options include " << "water, water + thermal" << std::endl; return EXIT_FAILURE; } return flowEbosWaterOnlyMain(argc_, argv_, outputCout_, outputFiles_); } int runWaterOnlyEnergy(const Phases& phases) { if (!phases.active(Phase::WATER) || phases.size() != 2) { if (outputCout_) std::cerr << "No valid configuration is found for water-only simulation, valid options include " << "water, water + thermal" << std::endl; return EXIT_FAILURE; } return flowEbosWaterOnlyEnergyMain(argc_, argv_, outputCout_, outputFiles_); } int runBrine(const Phases& phases) { if (! phases.active(Phase::WATER) || phases.size() == 2) { if (outputCout_) std::cerr << "No valid configuration is found for brine simulation, valid options include " << "oilwater + brine, gaswater + brine and blackoil + brine" << std::endl; return EXIT_FAILURE; } if (phases.size() == 3) { if (phases.active(Phase::OIL)){ // oil water brine case return flowEbosOilWaterBrineMain(argc_, argv_, outputCout_, outputFiles_); } if (phases.active(Phase::GAS)){ // gas water brine case if (eclipseState_->getSimulationConfig().hasPRECSALT() && eclipseState_->getSimulationConfig().hasVAPWAT()) { //case with water vaporization into gas phase and salt precipitation return flowEbosGasWaterSaltprecVapwatMain(argc_, argv_, outputCout_, outputFiles_); } else { return flowEbosGasWaterBrineMain(argc_, argv_, outputCout_, outputFiles_); } } } else if (eclipseState_->getSimulationConfig().hasPRECSALT()) { if (eclipseState_->getSimulationConfig().hasVAPWAT()) { //case with water vaporization into gas phase and salt precipitation return flowEbosBrinePrecsaltVapwatMain(argc_, argv_, outputCout_, outputFiles_); } else { return flowEbosBrineSaltPrecipitationMain(argc_, argv_, outputCout_, outputFiles_); } } else { return flowEbosBrineMain(argc_, argv_, outputCout_, outputFiles_); } return EXIT_FAILURE; } int runSolvent() { return flowEbosSolventMain(argc_, argv_, outputCout_, outputFiles_); } int runExtendedBlackOil() { return flowEbosExtboMain(argc_, argv_, outputCout_, outputFiles_); } int runThermal(const Phases& phases) { // oil-gas-thermal if (!phases.active( Phase::WATER ) && phases.active( Phase::OIL ) && phases.active( Phase::GAS )) { return flowEbosGasOilEnergyMain(argc_, argv_, outputCout_, outputFiles_); } // water-gas-thermal if (!phases.active( Phase::OIL ) && phases.active( Phase::WATER ) && phases.active( Phase::GAS )) { return flowEbosGasWaterEnergyMain(argc_, argv_, outputCout_, outputFiles_); } return flowEbosEnergyMain(argc_, argv_, outputCout_, outputFiles_); } int runBlackOil() { const bool diffusive = eclipseState_->getSimulationConfig().isDiffusive(); if (diffusive) { // Use the traditional linearizer, as the TpfaLinearizer does not // support the diffusion module yet. return flowEbosBlackoilMain(argc_, argv_, outputCout_, outputFiles_); } else { return flowEbosBlackoilTpfaMain(argc_, argv_, outputCout_, outputFiles_); } } void readDeck(const std::string& deckFilename, const std::string& outputDir, const std::string& outputMode, const bool init_from_restart_file, const bool allRanksDbgPrtLog, const std::string& parsingStrictness, const int mpiRank, const int output_param, const std::string& parameters, std::string_view moduleVersion, std::string_view compileTimestamp); void setupVanguard(); template static int getNumThreads() { int threads = 1; #ifdef _OPENMP // This function is called before the parallel OpenMP stuff gets initialized. // That initialization happends after the deck is read and we want this message. // Hence we duplicate the code of setupParallelism to get the number of threads. if (std::getenv("OMP_NUM_THREADS")) threads = omp_get_max_threads(); else threads = std::min(2, omp_get_max_threads()); const int input_threads = EWOMS_GET_PARAM(TypeTag, int, ThreadsPerProcess); if (input_threads > 0) threads = std::min(input_threads, omp_get_max_threads()); #endif return threads; } #if HAVE_DAMARIS void setupDamaris(const std::string& outputDir, const bool enableDamarisOutputCollective); #endif int argc_{0}; char** argv_{nullptr}; bool outputCout_{false}; bool outputFiles_{false}; double setupTime_{0.0}; std::string deckFilename_{}; std::string flowProgName_{}; char *saveArgs_[3]{nullptr}; std::unique_ptr udqState_{}; std::unique_ptr actionState_{}; std::unique_ptr wtestState_{}; // These variables may be owned by both Python and the simulator std::shared_ptr eclipseState_{}; std::shared_ptr schedule_{}; std::shared_ptr summaryConfig_{}; // To demonstrate run with non_world_comm bool test_split_comm_ = false; bool isSimulationRank_ = true; #if HAVE_DAMARIS bool enableDamarisOutput_ = false; #endif }; } // namespace Opm #endif // OPM_MAIN_HEADER_INCLUDED