// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#if HAVE_DUNE_FEM
#include
#else
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define CHECK(value, expected) \
{ \
if ((value) != (expected)) \
throw std::runtime_error("Test failed: " + std::to_string(value) + " != " + std::to_string(expected)); \
}
#define CHECK_CLOSE(value, expected, reltol) \
{ \
if (std::fabs((expected) - (value)) > 1e-14 && \
std::fabs(((expected) - (value))/((expected) + (value))) > reltol) \
throw std::runtime_error("Test failed: " + std::to_string(value) + " != " + std::to_string(expected)); \
}
#define REQUIRE(cond) \
{ \
if (!(cond)) \
throw std::runtime_error("Test condition failed"); \
}
BEGIN_PROPERTIES
NEW_TYPE_TAG(TestEquilTypeTag, INHERITS_FROM(BlackOilModel, EclBaseProblem));
END_PROPERTIES
template
std::unique_ptr
initSimulator(const char *filename)
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
std::string filenameArg = "--ecl-deck-file-name=";
filenameArg += filename;
const char* argv[] = {
"test_equil",
filenameArg.c_str()
};
Opm::setupParameters_(/*argc=*/sizeof(argv)/sizeof(argv[0]), argv, /*registerParams=*/false);
return std::unique_ptr(new Simulator);
}
template
static void initDefaultFluidSystem()
{
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
std::vector > Bo = {
{ 101353, 1. },
{ 6.21542e+07, 1 }
};
std::vector > muo = {
{ 101353, 1. },
{ 6.21542e+07, 1 }
};
std::vector > Bg = {
{ 101353, 1. },
{ 6.21542e+07, 1 }
};
std::vector > mug = {
{ 101353, 1. },
{ 6.21542e+07, 1 }
};
double rhoRefO = 700; // [kg/m3]
double rhoRefG = 1000; // [kg/m3]
double rhoRefW = 1000; // [kg/m3]
FluidSystem::initBegin(/*numPvtRegions=*/1);
FluidSystem::setEnableDissolvedGas(false);
FluidSystem::setEnableVaporizedOil(false);
FluidSystem::setReferenceDensities(rhoRefO, rhoRefW, rhoRefG, /*regionIdx=*/0);
auto gasPvt = std::make_shared>();
gasPvt->setApproach(Opm::GasPvtMultiplexer::DryGasPvt);
auto& dryGasPvt = gasPvt->getRealPvt::DryGasPvt>();
dryGasPvt.setNumRegions(/*numPvtRegion=*/1);
dryGasPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
dryGasPvt.setGasFormationVolumeFactor(/*regionIdx=*/0, Bg);
dryGasPvt.setGasViscosity(/*regionIdx=*/0, mug);
auto oilPvt = std::make_shared>();
oilPvt->setApproach(Opm::OilPvtMultiplexer::DeadOilPvt);
auto& deadOilPvt = oilPvt->getRealPvt::DeadOilPvt>();
deadOilPvt.setNumRegions(/*numPvtRegion=*/1);
deadOilPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
deadOilPvt.setInverseOilFormationVolumeFactor(/*regionIdx=*/0, Bo);
deadOilPvt.setOilViscosity(/*regionIdx=*/0, muo);
auto waterPvt = std::make_shared>();
waterPvt->setApproach(Opm::WaterPvtMultiplexer::ConstantCompressibilityWaterPvt);
auto& ccWaterPvt = waterPvt->getRealPvt::ConstantCompressibilityWaterPvt>();
ccWaterPvt.setNumRegions(/*numPvtRegions=*/1);
ccWaterPvt.setReferenceDensities(/*regionIdx=*/0, rhoRefO, rhoRefG, rhoRefW);
ccWaterPvt.setViscosity(/*regionIdx=*/0, 1);
ccWaterPvt.setCompressibility(/*regionIdx=*/0, 0);
gasPvt->initEnd();
oilPvt->initEnd();
waterPvt->initEnd();
FluidSystem::setGasPvt(std::move(gasPvt));
FluidSystem::setOilPvt(std::move(oilPvt));
FluidSystem::setWaterPvt(std::move(waterPvt));
FluidSystem::initEnd();
}
static Opm::EquilRecord mkEquilRecord( double datd, double datp,
double zwoc, double pcow_woc,
double zgoc, double pcgo_goc )
{
return Opm::EquilRecord( datd, datp, zwoc, pcow_woc, zgoc, pcgo_goc, true, true, 0);
}
void test_PhasePressure();
void test_PhasePressure()
{
typedef std::vector PVal;
typedef std::vector PPress;
auto record = mkEquilRecord( 0, 1e5, 5, 0, 0, 0 );
typedef TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_base.DATA");
initDefaultFluidSystem();
Opm::EQUIL::EquilReg
region(record,
std::make_shared(),
std::make_shared(),
0);
std::vector cells(simulator->vanguard().grid().size(0));
std::iota(cells.begin(), cells.end(), 0);
const double grav = 10;
const PPress ppress = Opm::EQUIL::phasePressures(simulator->vanguard().grid(), region, cells, grav);
const int first = 0, last = simulator->vanguard().grid().size(0) - 1;
const double reltol = 1.0e-8;
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][first] , 90e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][last ] , 180e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][first] , 103.5e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][last ] , 166.5e3 , reltol);
}
void test_CellSubset();
void test_CellSubset()
{
typedef std::vector PVal;
typedef std::vector PPress;
typedef TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_base.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
initDefaultFluidSystem();
Opm::EquilRecord record[] = { mkEquilRecord( 0, 1e5, 2.5, -0.075e5, 0, 0 ),
mkEquilRecord( 5, 1.35e5, 7.5, -0.225e5, 5, 0 ) };
Opm::EQUIL::EquilReg region[] =
{
Opm::EQUIL::EquilReg(record[0],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[0],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[1],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[1],
std::make_shared(),
std::make_shared(),
0)
};
const int cdim[] = { 2, 1, 2 };
int ncoarse = cdim[0];
for (std::size_t d = 1; d < 3; ++d) { ncoarse *= cdim[d]; }
std::vector< std::vector > cells(ncoarse);
for (int c = 0; c < simulator->vanguard().grid().size(0); ++c) {
int ci = c;
const int i = ci % grid.cartdims[0]; ci /= grid.cartdims[0];
const int j = ci % grid.cartdims[1];
const int k = ci / grid.cartdims[1];
const int ic = (i / (grid.cartdims[0] / cdim[0]));
const int jc = (j / (grid.cartdims[1] / cdim[1]));
const int kc = (k / (grid.cartdims[2] / cdim[2]));
const int ix = ic + cdim[0]*(jc + cdim[1]*kc);
assert ((0 <= ix) && (ix < ncoarse));
cells[ix].push_back(c);
}
PPress ppress(2, PVal(simulator->vanguard().grid().size(0), 0));
for (std::vector< std::vector >::const_iterator
r = cells.begin(), e = cells.end();
r != e; ++r)
{
const int rno = int(r - cells.begin());
const double grav = 10;
const PPress p =
Opm::EQUIL::phasePressures(simulator->vanguard().grid(), region[rno], *r, grav);
PVal::size_type i = 0;
for (std::vector::const_iterator
c = r->begin(), ce = r->end();
c != ce; ++c, ++i)
{
assert (i < p[0].size());
ppress[0][*c] = p[0][i];
ppress[1][*c] = p[1][i];
}
}
const int first = 0, last = simulator->vanguard().grid().size(0) - 1;
const double reltol = 1.0e-8;
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][first] , 105e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][last ] , 195e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][first] , 103.5e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][last ] , 166.5e3 , reltol);
}
void test_RegMapping();
void test_RegMapping()
{
typedef std::vector PVal;
typedef std::vector PPress;
Opm::EquilRecord record[] = { mkEquilRecord( 0, 1e5, 2.5, -0.075e5, 0, 0 ),
mkEquilRecord( 5, 1.35e5, 7.5, -0.225e5, 5, 0 ) };
typedef TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_base.DATA");
initDefaultFluidSystem();
Opm::EQUIL::EquilReg region[] =
{
Opm::EQUIL::EquilReg(record[0],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[0],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[1],
std::make_shared(),
std::make_shared(),
0)
,
Opm::EQUIL::EquilReg(record[1],
std::make_shared(),
std::make_shared(),
0)
};
std::vector eqlnum(simulator->vanguard().grid().size(0));
// [ 0 1; 2 3]
{
for (int i = 0; i < 5; ++i) {
for (int j = 0; j < 5; ++j) {
eqlnum[i*10 + j] = 0;
}
for (int j = 5; j < 10; ++j) {
eqlnum[i*10 + j] = 1;
}
}
for (int i = 5; i < 10; ++i) {
for (int j = 0; j < 5; ++j) {
eqlnum[i*10 + j] = 2;
}
for (int j = 5; j < 10; ++j) {
eqlnum[i*10 + j] = 3;
}
}
}
Opm::RegionMapping<> eqlmap(eqlnum);
PPress ppress(2, PVal(simulator->vanguard().grid().size(0), 0));
for (const auto& r : eqlmap.activeRegions()) {
const auto& rng = eqlmap.cells(r);
const int rno = r;
const double grav = 10;
const PPress p =
Opm::EQUIL::phasePressures(simulator->vanguard().grid(), region[rno], rng, grav);
PVal::size_type i = 0;
for (const auto& c : rng) {
assert (i < p[0].size());
ppress[0][c] = p[0][i];
ppress[1][c] = p[1][i];
++i;
}
}
const int first = 0, last = simulator->vanguard().grid().size(0) - 1;
const double reltol = 1.0e-8;
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][first] , 105e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::waterPhaseIdx][last ] , 195e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][first] , 103.5e3 , reltol);
CHECK_CLOSE(ppress[FluidSystem::oilPhaseIdx][last ] , 166.5e3 , reltol);
}
void test_DeckAllDead();
void test_DeckAllDead()
{
typedef TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_deadfluids.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 10.0);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-3;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first] , 1.496329839e7 , reltol);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last ] , 1.504526940e7 , reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last] , 1.504526940e7 , reltol);
}
void test_CapillaryInversion();
void test_CapillaryInversion()
{
// Test setup.
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP(TypeTag, MaterialLaw)::EclMaterialLawManager MaterialLawManager;
auto simulator = initSimulator("equil_capillary.DATA");
// Test the capillary inversion for oil-water.
const int cell = 0;
const double reltol = 1.0e-7;
{
const int phase = FluidSystem::waterPhaseIdx;
const bool increasing = false;
const std::vector pc = { 10.0e5, 0.5e5, 0.4e5, 0.3e5, 0.2e5, 0.1e5, 0.099e5, 0.0e5, -10.0e5 };
const std::vector s = { 0.2, 0.2, 0.2, 0.466666666666, 0.733333333333, 1.0, 1.0, 1.0, 1.0 };
REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::EQUIL::satFromPc(*simulator->problem().materialLawManager(), phase, cell, pc[i], increasing);
CHECK_CLOSE(s_computed, s[i], reltol);
}
}
// Test the capillary inversion for gas-oil.
{
const int phase = FluidSystem::gasPhaseIdx;
const bool increasing = true;
const std::vector pc = { 10.0e5, 0.6e5, 0.5e5, 0.4e5, 0.3e5, 0.2e5, 0.1e5, 0.0e5, -10.0e5 };
const std::vector s = { 0.8, 0.8, 0.8, 0.533333333333, 0.266666666666, 0.0, 0.0, 0.0, 0.0 };
REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::EQUIL::satFromPc(*simulator->problem().materialLawManager(), phase, cell, pc[i], increasing);
CHECK_CLOSE(s_computed, s[i], reltol);
}
}
// Test the capillary inversion for gas-water.
{
const int water = FluidSystem::waterPhaseIdx;
const int gas = FluidSystem::gasPhaseIdx;
const std::vector pc = { 0.9e5, 0.8e5, 0.6e5, 0.4e5, 0.3e5 };
const std::vector s = { 0.2, 0.333333333333, 0.6, 0.866666666666, 1.0 };
REQUIRE(pc.size() == s.size());
for (size_t i = 0; i < pc.size(); ++i) {
const double s_computed = Opm::EQUIL::satFromSumOfPcs(*simulator->problem().materialLawManager(), water, gas, cell, pc[i]);
CHECK_CLOSE(s_computed, s[i], reltol);
}
}
}
void test_DeckWithCapillary();
void test_DeckWithCapillary()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_capillary.DATA");
auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 10.0);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first] , 1.469769063e7 , reltol);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last ] , 15452880.328284413 , reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last] , 15462880.328284413 , reltol);
const auto& sats = comp.saturation();
std::vector s[3];
s[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.42190294373815257, 0.77800802072306474, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0.0073481611123183965, 0.79272270823081337, 0.8, 0.8, 0.8, 0.8, 0.57809705626184749, 0.22199197927693526, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.79265183888768165, 0.0072772917691866562, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s[phase].size());
for (size_t i = 0; i < s[phase].size(); ++i) {
CHECK_CLOSE(sats[phase][i], s[phase][i], reltol);
}
}
}
void test_DeckWithCapillaryOverlap();
void test_DeckWithCapillaryOverlap()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_capillary_overlap.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.80665);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.48324e+07, reltol_ecl); // eclipse
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.54801e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.49224e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.54901e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first] , 14832467.14, reltol); // opm
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last ] , 15479883.47, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last ] , 15489883.47, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
std::vector s_ecl[3]; // eclipse
s_ecl[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22874042, 0.53397995, 0.78454906, 0.91542006, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_ecl[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20039, 0.08458, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_ecl[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77125955, 0.46602005, 0.015063271, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
std::vector s_opm[3]; // opm
s_opm[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22892931226886132, 0.53406457830052489, 0.78457075254244724, 0.91539712466977541, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_opm[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20023624994125844, 0.084602875330224592, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_opm[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77107068773113863, 0.46593542169947511, 0.015192997516294321, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
}
}
}
void test_DeckWithLiveOil();
void test_DeckWithLiveOil()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_liveoil.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
// Initialize the fluid system
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.80665);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.48324e+07, reltol_ecl); // eclipse
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.54801e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.49224e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.54901e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.483246714e7, reltol); // opm
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.547991652e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.492246714e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.548991652e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
std::vector s_ecl[3]; // eclipse
s_ecl[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22898, 0.53422, 0.78470, 0.91531, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_ecl[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20073, 0.08469, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_ecl[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77102, 0.46578, 0.01458, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
std::vector s_opm[3]; // opm
s_opm[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22916963446461344, 0.53430490523774521, 0.78471886612242092, 0.91528324362210933, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_opm[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.20057438297017782, 0.084716756377890667, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_opm[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77083036553538653, 0.46569509476225479, 0.014706750907401245, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rs = comp.rs();
const std::vector rs_opm {74.61233568, 74.64905212, 74.68578656, 74.72253902, // opm
74.75930951, 74.79609803, 74.83290459, 74.87519876,
74.96925416, 75.09067512, 75.0, 75.0,
75.0, 75.0, 75.0, 75.0,
75.0, 75.0, 75.0, 75.0};
const std::vector rs_ecl {74.612228, 74.648956, 74.685707, 74.722473, // eclipse
74.759254, 74.796051, 74.832870, 74.875145,
74.969231, 75.090706, 75.000000, 75.000000,
75.000000, 75.000000, 75.000000, 75.000000,
75.000000, 75.000000, 75.000000, 75.000000};
for (size_t i = 0; i < rs_opm.size(); ++i) {
//std::cout << std::setprecision(10) << rs[i] << '\n';
CHECK_CLOSE(rs[i], rs_opm[i], reltol);
CHECK_CLOSE(rs[i], rs_ecl[i], reltol_ecl);
}
}
void test_DeckWithLiveGas();
void test_DeckWithLiveGas()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_livegas.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.80665);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-3;
const double reltol_ecl = 1.0;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.48215e+07, reltol_ecl); // eclipse
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.54801e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.49115e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.54901e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.482150311e7, reltol); // opm
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.547988347e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.491150311e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.548988347e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
std::vector s_ecl[3]; // eclipse
s_ecl[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24285614, 0.53869015, 0.78454906, 0.91542006, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_ecl[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18311, 0.08458, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_ecl[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75714386, 0.46130988, 0.032345835, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
std::vector s_opm[3]; // opm
s_opm[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24310545, 0.5388, 0.78458, 0.91540, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_opm[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18288667, 0.0846, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_opm[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75689455, 0.4612, 0.03253333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
CHECK_CLOSE(sats[phase][i], s_opm[phase][i], 100.*reltol);
CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rv = comp.rv();
const std::vector rv_opm { // opm
2.4884509e-4, 2.4910378e-4, 2.4936267e-4, 2.4962174e-4,
2.4988100e-4, 2.5014044e-4, 2.5040008e-4, 2.5065990e-4,
2.5091992e-4, 2.5118012e-4, 2.5223082e-4, 2.5105e-4,
2.5105e-4, 2.5105e-4, 2.5105e-4, 2.5105e-4,
2.5105e-4, 2.5105e-4, 2.5105e-4, 2.5105e-4};
const std::vector rv_ecl { // eclipse
0.24884584E-03, 0.24910446E-03, 0.24936325E-03, 0.24962222E-03,
0.24988138E-03, 0.25014076E-03, 0.25040031E-03, 0.25066003E-03,
0.25091995E-03, 0.25118008E-03, 0.25223137E-03, 0.25104999E-03,
0.25104999E-03, 0.25104999E-03, 0.25104999E-03, 0.25104999E-03,
0.25104999E-03, 0.25104999E-03, 0.25104999E-03, 0.25104999E-03};
for (size_t i = 0; i < rv_opm.size(); ++i) {
CHECK_CLOSE(rv[i], rv_opm[i], reltol);
CHECK_CLOSE(rv[i], rv_ecl[i], reltol_ecl);
}
}
void test_DeckWithRSVDAndRVVD();
void test_DeckWithRSVDAndRVVD()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_rsvd_and_rvvd.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.80665);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
const double reltol_ecl = 1.0;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.48350e+07, reltol_ecl); // eclipse
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.54794e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.49250e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.54894e+07, reltol_ecl);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 1.483499660e7, reltol); // opm
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 1.547924516e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 1.492499660e7, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 1.548924516e7, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
std::vector s_ecl[3]; // eclipse
s_ecl[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.22206347, 0.52871972, 0.78150368, 0.91819441, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_ecl[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.19656529, 0.081805572, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_ecl[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.77793652, 0.47128031, 0.021931054, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
std::vector s_opm[3]; // opm
s_opm[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2223045711692897, 0.52882298575945874, 0.78152142505479982, 0.91816512259416283, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_opm[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.19637607881498206, 0.08183487740583717, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_opm[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.7776954288307103, 0.47117701424054126, 0.02210249613021811, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
CHECK_CLOSE(sats[phase][i], s_ecl[phase][i], reltol_ecl);
}
std::cout << std::endl;
}
const auto& rs = comp.rs();
const std::vector rs_opm { // opm
74.62498302, 74.65959041, 74.69438035, 74.72935336,
74.76450995, 74.79985061, 74.83537588, 74.87527065,
74.96863769, 75.08891765, 52.5, 57.5,
62.5, 67.5, 72.5, 76.45954841,
76.70621045, 76.95287736, 77.19954913, 77.44622578};
const std::vector rs_ecl { // eclipse
74.625114, 74.659706, 74.694481, 74.729439,
74.764580, 74.799904, 74.835419, 74.875252,
74.968628, 75.088951, 52.500000, 57.500000,
62.500000, 67.500000, 72.500000, 76.168388,
76.349953, 76.531532, 76.713142, 76.894775,};
const auto& rv = comp.rv();
const std::vector rv_opm { // opm
2.50e-6, 7.50e-6, 1.25e-5, 1.75e-5,
2.25e-5, 2.75e-5, 3.25e-5, 3.75e-5,
4.25e-5, 2.51158386e-4, 2.52203372e-4, 5.75e-5,
6.25e-5, 6.75e-5, 7.25e-5, 7.75e-5,
8.25e-5, 8.75e-5, 9.25e-5, 9.75e-5};
const std::vector rv_ecl { // eclipse
0.24999999E-05, 0.74999998E-05, 0.12500000E-04, 0.17500000E-04,
0.22500000E-04, 0.27500000E-04, 0.32500000E-04, 0.37500002E-04,
0.42500000E-04, 0.25115837E-03, 0.25220393E-03, 0.57500001E-04,
0.62500003E-04, 0.67499997E-04, 0.72499999E-04, 0.77500001E-04,
0.82500002E-04, 0.87499997E-04, 0.92499999E-04, 0.97500000E-04};
for (size_t i = 0; i < rv_opm.size(); ++i) {
//std::cout << std::setprecision(10) << rs[i] << '\n';
CHECK_CLOSE(rs[i], rs_opm[i], reltol);
CHECK_CLOSE(rs[i], rs_ecl[i], reltol_ecl);
CHECK_CLOSE(rv[i], rv_opm[i], reltol);
CHECK_CLOSE(rv[i], rv_ecl[i], reltol_ecl);
}
}
void test_DeckWithPBVDAndPDVD();
void test_DeckWithPBVDAndPDVD()
{
typedef typename TTAG(TestEquilTypeTag) TypeTag;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
auto simulator = initSimulator("equil_pbvd_and_pdvd.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
Opm::EQUIL::DeckDependent::InitialStateComputer comp(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.80665);
const auto& pressures = comp.press();
REQUIRE(pressures.size() == 3);
REQUIRE(int(pressures[0].size()) == grid.number_of_cells);
const int first = 0, last = grid.number_of_cells - 1;
// The relative tolerance is too loose to be very useful,
// but the answer we are checking is the result of an ODE
// solver, and it is unclear if we should check it against
// the true answer or something else.
const double reltol = 1.0e-6;
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][first], 14821552, reltol);
CHECK_CLOSE(pressures[FluidSystem::waterPhaseIdx][last], 15479828, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][first], 14911552, reltol);
CHECK_CLOSE(pressures[FluidSystem::oilPhaseIdx][last], 15489828, reltol);
const auto& sats = comp.saturation();
// std::cout << "Saturations:\n";
// for (const auto& sat : sats) {
// for (const double s : sat) {
// std::cout << s << ' ';
// }
// std::cout << std::endl;
// }
std::vector s_opm[3]; // opm
s_opm[FluidSystem::waterPhaseIdx] = { 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.24257337312592703, 0.53834824764362788, 0.7844998821510003, 0.9152832369551807, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
s_opm[FluidSystem::oilPhaseIdx] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18185970596719522, 0.084716763044819343, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
s_opm[FluidSystem::gasPhaseIdx] = { 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.75742662687407303, 0.46165175235637212, 0.033640411881804465, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
for (int phase = 0; phase < 3; ++phase) {
REQUIRE(sats[phase].size() == s_opm[phase].size());
for (size_t i = 0; i < s_opm[phase].size(); ++i) {
//std::cout << std::setprecision(10) << sats[phase][i] << '\n';
CHECK_CLOSE(sats[phase][i], s_opm[phase][i], reltol);
}
}
const auto& rs = comp.rs();
const std::vector rs_opm { // opm
74.55776480956456,
74.6008507125663,
74.6439680789467,
74.68711693934459,
74.73029732443825,
74.77350926494491,
74.81675279162118,
74.86802321984302,
74.96677993174352,
75.09034523640406,
75, 75, 75,75,75, 75, 75, 75, 75, 75 };
const auto& rv = comp.rv();
const std::vector rv_opm {
0.0002488465888573874,
0.0002491051042753978,
0.0002493638084736803,
0.0002496227016360676,
0.0002498817839466295,
0.00025,
0.00025,
0.00025,
0.00025,
0.000251180039180951,
0.0002522295187440788,
0.0002275000000000001,
0.0002125,
0.0001975,
0.0001825,
0.0001675,
0.0001525,
0.0001375,
0.0001225,
0.0001075};
for (size_t i = 0; i < rv_opm.size(); ++i) {
CHECK_CLOSE(rs[i], rs_opm[i], reltol);
CHECK_CLOSE(rv[i], rv_opm[i], reltol);
}
}
void test_DeckWithSwatinit();
void test_DeckWithSwatinit()
{
#if 0
typedef typename TTAG(TestEquilTypeTag) TypeTag;
auto simulator = initSimulator("equil_capillary_swatinit.DATA");
const auto& eclipseState = simulator->vanguard().eclState();
Opm::GridManager gm(eclipseState.getInputGrid());
const UnstructuredGrid& grid = *(gm.c_grid());
// Create material law manager.
std::vector compressedToCartesianIdx
= Opm::compressedToCartesian(grid.number_of_cells, grid.global_cell);
MaterialLawManager materialLawManager = MaterialLawManager();
materialLawManager.initFromDeck(deck, eclipseState, compressedToCartesianIdx);
MaterialLawManager materialLawManagerScaled = MaterialLawManager();
materialLawManagerScaled.initFromDeck(deck, eclipseState, compressedToCartesianIdx);
// reference saturations
const std::vector s[3]{
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.42528761746004229, 0.77462669821009045, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0.014813991154779993, 0.78525420807446045, 0.8, 0.8, 0.8, 0.8, 0.57471238253995771, 0.22537330178990955, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.78518600884522005, 0.014745791925539575, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
// sw in cell 1-5 is forced to be 0.2 since swl=0.2
// sw in cell 13 and 14 is forced to be swu=1 since P_oil - P_wat < 0.
const std::vector swatinit[3]{
{ 0.2, 0.2, 0.2, 0.2, 0.2, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1, 1 },
{ 0, 0, 0, 0.014813991154779993, 0.78525420807446045, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0.8, 0.8, 0.8, 0.78518600884522005, 0.014745791925539575, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
// Adjust oil pressure according to gas saturation and cap pressure
typedef Opm::SimpleModularFluidState SatOnlyFluidState;
SatOnlyFluidState fluidState;
typedef MaterialLawManager::MaterialLaw MaterialLaw;
// Initialize the fluid system
FluidSystem::initFromDeck(deck, eclipseState);
// reference pcs
const int numCells = Opm::UgGridHelpers::numCells(grid);
std::vector pc_original(numCells * FluidSystem::numPhases);
for (int c = 0; c < numCells; ++c) {
std::vector pc = {0,0,0};
double sw = s[FluidSystem::waterPhaseIdx][c];
double so = s[FluidSystem::oilPhaseIdx][c];
double sg = s[FluidSystem::gasPhaseIdx][c];
fluidState.setSaturation(FluidSystem::waterPhaseIdx, sw);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, so);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, sg);
const auto& matParams = materialLawManager.materialLawParams(c);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
pc_original[3*c + 0] = pc[FluidSystem::oilPhaseIdx] - pc[FluidSystem::waterPhaseIdx];
pc_original[3*c + 1] = 0.0;
pc_original[3*c + 2] = pc[FluidSystem::oilPhaseIdx] + pc[FluidSystem::gasPhaseIdx];
}
std::vector pc_scaled_truth = pc_original;
// modify pcow for cell 1 - 12 (where sw is changed due to swatinit)
// for the reference scaled pc.
pc_scaled_truth[3*0 + 0] = 150031.3;
pc_scaled_truth[3*1 + 0] = 136815.6;
pc_scaled_truth[3*2 + 0] = 123612.7;
pc_scaled_truth[3*3 + 0] = 110422.7;
pc_scaled_truth[3*4 + 0] = 97245.4;
pc_scaled_truth[3*5 + 0] = 84081;
pc_scaled_truth[3*6 + 0] = 70929;
pc_scaled_truth[3*7 + 0] = 57791;
pc_scaled_truth[3*8 + 0] = 44665;
pc_scaled_truth[3*9 + 0] = 31552;
pc_scaled_truth[3*10 + 0] = 18451.5;
pc_scaled_truth[3*11 + 0] = 5364.1;
// compute the initial state
// apply swatinit
Opm::EQUIL::DeckDependent::InitialStateComputer compScaled(materialLawManagerScaled, eclipseState, simulator->vanguard().grid(), 9.81, true);
// don't apply swatinit
Opm::EQUIL::DeckDependent::InitialStateComputer compUnscaled(*simulator->problem().materialLawManager(), eclipseState, simulator->vanguard().grid(), 9.81, false);
// compute pc
std::vector pc_scaled(numCells * FluidSystem::numPhases);
for (int c = 0; c < numCells; ++c) {
std::vector pc = {0,0,0};
double sw = compScaled.saturation().data()[FluidSystem::waterPhaseIdx][c];
double so = compScaled.saturation().data()[FluidSystem::oilPhaseIdx][c];
double sg = compScaled.saturation().data()[FluidSystem::gasPhaseIdx][c];
fluidState.setSaturation(FluidSystem::waterPhaseIdx, sw);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, so);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, sg);
const auto& matParams = materialLawManagerScaled.materialLawParams(c);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
pc_scaled[3*c + 0] = pc[FluidSystem::oilPhaseIdx] - pc[FluidSystem::waterPhaseIdx];
pc_scaled[3*c + 1] = 0.0;
pc_scaled[3*c + 2] = pc[FluidSystem::oilPhaseIdx] + pc[FluidSystem::gasPhaseIdx];
}
std::vector pc_unscaled(numCells * FluidSystem::numPhases);
for (int c = 0; c < numCells; ++c) {
std::vector pc = {0,0,0};
double sw = compUnscaled.saturation().data()[FluidSystem::waterPhaseIdx][c];
double so = compUnscaled.saturation().data()[FluidSystem::oilPhaseIdx][c];
double sg = compUnscaled.saturation().data()[FluidSystem::gasPhaseIdx][c];
fluidState.setSaturation(FluidSystem::waterPhaseIdx, sw);
fluidState.setSaturation(FluidSystem::oilPhaseIdx, so);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, sg);
const auto& matParams = materialLawManager.materialLawParams(c);
MaterialLaw::capillaryPressures(pc, matParams, fluidState);
pc_unscaled[3*c + 0] = pc[FluidSystem::oilPhaseIdx] - pc[FluidSystem::waterPhaseIdx];
pc_unscaled[3*c + 1] = 0.0;
pc_unscaled[3*c + 2] = pc[FluidSystem::oilPhaseIdx] + pc[FluidSystem::gasPhaseIdx];
}
// test
const double reltol = 1.0e-3;
for (int phase = 0; phase < 3; ++phase) {
for (size_t i = 0; i < 20; ++i) {
CHECK_CLOSE( pc_original[3*i + phase ], pc_unscaled[3*i + phase ], reltol);
CHECK_CLOSE( pc_scaled_truth[3*i + phase], pc_scaled[3*i + phase ], reltol);
}
}
for (int phase = 0; phase < 3; ++phase) {
for (size_t i = 0; i < 20; ++i) {
CHECK_CLOSE(compUnscaled.saturation()[phase][i], s[phase][i], reltol);
CHECK_CLOSE(compScaled.saturation()[phase][i], swatinit[phase][i], reltol);
}
}
#endif
}
int main(int argc, char** argv)
{
#if HAVE_DUNE_FEM
Dune::Fem::MPIManager::initialize(argc, argv);
#else
Dune::MPIHelper::instance(argc, argv);
#endif
typedef TTAG(TestEquilTypeTag) TypeTag;
Opm::registerAllParameters_();
test_PhasePressure();
test_CellSubset();
test_RegMapping();
test_DeckAllDead();
test_CapillaryInversion();
test_DeckWithCapillary();
test_DeckWithCapillaryOverlap();
test_DeckWithLiveOil();
test_DeckWithLiveGas();
test_DeckWithRSVDAndRVVD();
test_DeckWithPBVDAndPDVD();
//test_DeckWithSwatinit();
return 0;
}