/* Copyright 2013, 2015 SINTEF ICT, Applied Mathematics. Copyright 2014, 2015 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2014, 2015 Statoil ASA. Copyright 2015 NTNU Copyright 2015 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #define OPM_BLACKOILMODELEBOS_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include namespace Ewoms { namespace Properties { NEW_TYPE_TAG(EclFlowProblem, INHERITS_FROM(BlackOilModel, EclBaseProblem)); SET_BOOL_PROP(EclFlowProblem, DisableWells, true); SET_BOOL_PROP(EclFlowProblem, EnableDebuggingChecks, false); // SWATINIT is done by the flow part of flow_ebos. this can be removed once the legacy // code for fluid and satfunc handling gets fully retired. SET_BOOL_PROP(EclFlowProblem, EnableSwatinit, false); }} namespace Opm { namespace parameter { class ParameterGroup; } class DerivedGeology; class RockCompressibility; class NewtonIterationBlackoilInterface; class VFPProperties; class SimulationDataContainer; /// A model implementation for three-phase black oil. /// /// The simulator is capable of handling three-phase problems /// where gas can be dissolved in oil and vice versa. It /// uses an industry-standard TPFA discretization with per-phase /// upwind weighting of mobilities. class BlackoilModelEbos { typedef BlackoilModelEbos ThisType; public: // --------- Types and enums --------- typedef BlackoilState ReservoirState; typedef WellStateFullyImplicitBlackoilDense WellState; typedef BlackoilModelParameters ModelParameters; typedef DefaultBlackoilSolutionState SolutionState; typedef typename TTAG(EclFlowProblem) TypeTag; typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator ; typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid; typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ; typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables ; typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem; typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices; typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw; typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams; typedef double Scalar; typedef Dune::FieldVector VectorBlockType; typedef Dune::FieldMatrix MatrixBlockType; typedef Dune::BCRSMatrix Mat; typedef Dune::BlockVector BVector; typedef ISTLSolver< MatrixBlockType, VectorBlockType > ISTLSolverType; //typedef typename SolutionVector :: value_type PrimaryVariables ; struct FIPData { enum FipId { FIP_AQUA = Opm::Water, FIP_LIQUID = Opm::Oil, FIP_VAPOUR = Opm::Gas, FIP_DISSOLVED_GAS = 3, FIP_VAPORIZED_OIL = 4, FIP_PV = 5, //< Pore volume FIP_WEIGHTED_PRESSURE = 6 }; std::array, 7> fip; }; // --------- Public methods --------- /// Construct the model. It will retain references to the /// arguments of this functions, and they are expected to /// remain in scope for the lifetime of the solver. /// \param[in] param parameters /// \param[in] grid grid data structure /// \param[in] fluid fluid properties /// \param[in] geo rock properties /// \param[in] rock_comp_props if non-null, rock compressibility properties /// \param[in] wells well structure /// \param[in] vfp_properties Vertical flow performance tables /// \param[in] linsolver linear solver /// \param[in] eclState eclipse state /// \param[in] terminal_output request output to cout/cerr BlackoilModelEbos(Simulator& ebosSimulator, const ModelParameters& param, const BlackoilPropsAdInterface& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const StandardWellsDense& well_model, const NewtonIterationBlackoilInterface& linsolver, const bool terminal_output) : ebosSimulator_(ebosSimulator) , grid_(ebosSimulator_.gridManager().grid()) , istlSolver_( dynamic_cast< const ISTLSolverType* > (&linsolver) ) , fluid_ (fluid) , geo_ (geo) , vfp_properties_( eclState().getTableManager().getVFPInjTables(), eclState().getTableManager().getVFPProdTables()) , active_(detail::activePhases(fluid.phaseUsage())) , has_disgas_(FluidSystem::enableDissolvedGas()) , has_vapoil_(FluidSystem::enableVaporizedOil()) , param_( param ) , well_model_ (well_model) , terminal_output_ (terminal_output) , current_relaxation_(1.0) , dx_old_(AutoDiffGrid::numCells(grid_)) , isBeginReportStep_(false) , invalidateIntensiveQuantitiesCache_(true) { DUNE_UNUSED_PARAMETER(rock_comp_props); const double gravity = detail::getGravity(geo_.gravity(), UgGridHelpers::dimensions(grid_)); const std::vector pv(geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size()); const std::vector depth(geo_.z().data(), geo_.z().data() + geo_.z().size()); well_model_.init(&fluid_, &active_, &vfp_properties_, gravity, depth, pv); wellModel().setWellsActive( localWellsActive() ); global_nc_ = Opm::AutoDiffGrid::numCells(grid_); // compute global sum of number of cells global_nc_ = grid_.comm().sum( global_nc_ ); if (!istlSolver_) { OPM_THROW(std::logic_error,"solver down cast to ISTLSolver failed"); } } bool isParallel() const { #if HAVE_MPI if ( istlSolver().parallelInformation().type() != typeid(ParallelISTLInformation) ) { return false; } else { const auto& comm =boost::any_cast(istlSolver().parallelInformation()).communicator(); return comm.size() > 1; } #else return false; #endif } const EclipseState& eclState() const { return *ebosSimulator_.gridManager().eclState(); } /// Called once before each time step. /// \param[in] timer simulation timer /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void prepareStep(const SimulatorTimerInterface& /*timer*/, const ReservoirState& /*reservoir_state*/, const WellState& /* well_state */) { } /// Called once per nonlinear iteration. /// This model will perform a Newton-Raphson update, changing reservoir_state /// and well_state. It will also use the nonlinear_solver to do relaxation of /// updates if necessary. /// \param[in] iteration should be 0 for the first call of a new timestep /// \param[in] timer simulation timer /// \param[in] nonlinear_solver nonlinear solver used (for oscillation/relaxation control) /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables template SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver, ReservoirState& reservoir_state, WellState& well_state) { SimulatorReport report; Dune::Timer perfTimer; perfTimer.start(); if (iteration == 0) { // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations. residual_norms_history_.clear(); current_relaxation_ = 1.0; dx_old_ = 0.0; } // reset intensive quantities cache useless other options are set // further down invalidateIntensiveQuantitiesCache_ = true; report.total_linearizations = 1; try { report += assemble(timer, iteration, reservoir_state, well_state); report.assemble_time += perfTimer.stop(); } catch (...) { report.assemble_time += perfTimer.stop(); // todo (?): make the report an attribute of the class throw; // continue throwing the stick } std::vector residual_norms; perfTimer.reset(); perfTimer.start(); report.converged = getConvergence(timer, iteration,residual_norms); report.update_time += perfTimer.stop(); residual_norms_history_.push_back(residual_norms); bool must_solve = iteration < nonlinear_solver.minIter() || !report.converged; if (must_solve) { perfTimer.reset(); perfTimer.start(); report.total_newton_iterations = 1; // enable single precision for solvers when dt is smaller then 20 days //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ; // Compute the nonlinear update. const int nc = AutoDiffGrid::numCells(grid_); const int nw = numWells(); BVector x(nc); BVector xw(nw); try { solveJacobianSystem(x, xw); report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); } catch (...) { report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); // todo (?): make the report an attribute of the class throw; // re-throw up } perfTimer.reset(); perfTimer.start(); // Stabilize the nonlinear update. bool isOscillate = false; bool isStagnate = false; nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate); if (isOscillate) { current_relaxation_ -= nonlinear_solver.relaxIncrement(); current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax()); if (terminalOutputEnabled()) { std::string msg = " Oscillating behavior detected: Relaxation set to " + std::to_string(current_relaxation_); OpmLog::info(msg); } } nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_); // Apply the update, with considering model-dependent limitations and // chopping of the update. updateState(x,reservoir_state); wellModel().updateWellState(xw, well_state); report.update_time += perfTimer.stop(); } else { // if the solution is not updated, we do not need to recalculate the // intensive quantities in the next iteration. assert(report.converged); invalidateIntensiveQuantitiesCache_ = false ; } return report; } void printIf(int c, double x, double y, double eps, std::string type) { if (std::abs(x-y) > eps) { std::cout << type << " " < p0 ( previous.pressure() ); std::vector< double > sat0( previous.saturation() ); const std::size_t pSize = p0.size(); const std::size_t satSize = sat0.size(); // compute u^n - u^n+1 for( std::size_t i=0; i 0.0 ) { return stateOld / stateNew ; } else { return 0.0; } } /// The size (number of unknowns) of the nonlinear system of equations. int sizeNonLinear() const { const int nc = Opm::AutoDiffGrid::numCells(grid_); const int nw = numWells(); return numPhases() * (nc + nw); } /// Number of linear iterations used in last call to solveJacobianSystem(). int linearIterationsLastSolve() const { return istlSolver().iterations(); } template void applyWellModelAdd(const X& x, Y& y ) { wellModel().apply(x, y); } template void applyWellModelScaleAdd(const Scalar alpha, const X& x, Y& y ) { wellModel().applyScaleAdd(alpha, x, y); } /// Solve the Jacobian system Jx = r where J is the Jacobian and /// r is the residual. void solveJacobianSystem(BVector& x, BVector& xw) const { const auto& ebosJac = ebosSimulator_.model().linearizer().matrix(); auto& ebosResid = ebosSimulator_.model().linearizer().residual(); if( xw.size() > 0 ) { // apply well residual to the residual. wellModel().apply(ebosResid); } // set initial guess x = 0.0; // Solve system. if( isParallel() ) { typedef WellModelMatrixAdapter< Mat, BVector, BVector, ThisType, true > Operator; Operator opA(ebosJac, const_cast< ThisType& > (*this), istlSolver().parallelInformation() ); assert( opA.comm() ); istlSolver().solve( opA, x, ebosResid, *(opA.comm()) ); } else { typedef WellModelMatrixAdapter< Mat, BVector, BVector, ThisType, false > Operator; Operator opA(ebosJac, const_cast< ThisType& > (*this) ); istlSolver().solve( opA, x, ebosResid ); } if( xw.size() > 0 ) { // recover wells. xw = 0.0; wellModel().recoverVariable(x, xw); } } //===================================================================== // Implementation for ISTL-matrix based operator //===================================================================== /*! \brief Adapter to turn a matrix into a linear operator. Adapts a matrix to the assembled linear operator interface */ template class WellModelMatrixAdapter : public Dune::AssembledLinearOperator { typedef Dune::AssembledLinearOperator BaseType; public: typedef M matrix_type; typedef X domain_type; typedef Y range_type; typedef typename X::field_type field_type; #if HAVE_MPI typedef Dune::OwnerOverlapCopyCommunication communication_type; #else typedef Dune::CollectiveCommunication< Grid > communication_type; #endif enum { //! \brief The solver category. category = overlapping ? Dune::SolverCategory::overlapping : Dune::SolverCategory::sequential }; //! constructor: just store a reference to a matrix WellModelMatrixAdapter (const M& A, WellModel& wellMod, const boost::any& parallelInformation = boost::any() ) : A_( A ), wellMod_( wellMod ), comm_() { #if HAVE_MPI if( parallelInformation.type() == typeid(ParallelISTLInformation) ) { const ParallelISTLInformation& info = boost::any_cast( parallelInformation); comm_.reset( new communication_type( info.communicator() ) ); } #endif } virtual void apply( const X& x, Y& y ) const { A_.mv( x, y ); // add well model modification to y wellMod_.applyWellModelAdd(x, y ); #if HAVE_MPI if( comm_ ) comm_->project( y ); #endif } // y += \alpha * A * x virtual void applyscaleadd (field_type alpha, const X& x, Y& y) const { A_.usmv(alpha,x,y); // add scaled well model modification to y wellMod_.applyWellModelScaleAdd( alpha, x, y ); #if HAVE_MPI if( comm_ ) comm_->project( y ); #endif } virtual const matrix_type& getmat() const { return A_; } communication_type* comm() { return comm_.operator->(); } protected: const matrix_type& A_ ; WellModel& wellMod_; std::unique_ptr< communication_type > comm_; }; /// Apply an update to the primary variables, chopped if appropriate. /// \param[in] dx updates to apply to primary variables /// \param[in, out] reservoir_state reservoir state variables /// \param[in, out] well_state well state variables void updateState(const BVector& dx, ReservoirState& reservoir_state) { using namespace Opm::AutoDiffGrid; const int np = fluid_.numPhases(); const int nc = numCells(grid_); for (int cell_idx = 0; cell_idx < nc; ++cell_idx) { const double& dp = dx[cell_idx][flowPhaseToEbosCompIdx(0)]; //reservoir_state.pressure()[cell_idx] -= dp; double& p = reservoir_state.pressure()[cell_idx]; const double& dp_rel_max = dpMaxRel(); const int sign_dp = dp > 0 ? 1: -1; p -= sign_dp * std::min(std::abs(dp), std::abs(p)*dp_rel_max); p = std::max(p, 0.0); // Saturation updates. const double dsw = active_[Water] ? dx[cell_idx][flowPhaseToEbosCompIdx(1)] : 0.0; const int xvar_ind = active_[Water] ? 2 : 1; const double dxvar = active_[Gas] ? dx[cell_idx][flowPhaseToEbosCompIdx(xvar_ind)] : 0.0; double dso = 0.0; double dsg = 0.0; double drs = 0.0; double drv = 0.0; double maxVal = 0.0; // water phase maxVal = std::max(std::abs(dsw),maxVal); dso -= dsw; // gas phase switch (reservoir_state.hydroCarbonState()[cell_idx]) { case HydroCarbonState::GasAndOil: dsg = dxvar; break; case HydroCarbonState::OilOnly: drs = dxvar; break; case HydroCarbonState::GasOnly: dsg -= dsw; drv = dxvar; break; default: OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << reservoir_state.hydroCarbonState()[cell_idx]); } dso -= dsg; // Appleyard chop process. maxVal = std::max(std::abs(dsg),maxVal); double step = dsMax()/maxVal; step = std::min(step, 1.0); const Opm::PhaseUsage& pu = fluid_.phaseUsage(); if (active_[Water]) { double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]]; sw -= step * dsw; } if (active_[Gas]) { double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]]; sg -= step * dsg; } double& so = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Oil ]]; so -= step * dso; // phase for when oil and gas if (active_[Gas] && active_[Oil] ) { // const double drmaxrel = drMaxRel(); // Update rs and rv if (has_disgas_) { double& rs = reservoir_state.gasoilratio()[cell_idx]; rs -= drs; rs = std::max(rs, 0.0); } if (has_vapoil_) { double& rv = reservoir_state.rv()[cell_idx]; rv -= drv; rv = std::max(rv, 0.0); } // Sg is used as primal variable for water only cells. const double epsilon = 1e-4; //std::sqrt(std::numeric_limits::epsilon()); double& sw = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Water ]]; double& sg = reservoir_state.saturation()[cell_idx*np + pu.phase_pos[ Gas ]]; double& rs = reservoir_state.gasoilratio()[cell_idx]; double& rv = reservoir_state.rv()[cell_idx]; // phase translation sg <-> rs const HydroCarbonState hydroCarbonState = reservoir_state.hydroCarbonState()[cell_idx]; const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); switch (hydroCarbonState) { case HydroCarbonState::GasAndOil: { if (sw > (1.0 - epsilon)) // water only i.e. do nothing break; if (sg <= 0.0 && has_disgas_) { reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::OilOnly; // sg --> rs sg = 0; so = 1.0 - sw - sg; const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]); double& rs = reservoir_state.gasoilratio()[cell_idx]; rs = rsSat*(1-epsilon); } else if (so <= 0.0 && has_vapoil_) { reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasOnly; // sg --> rv so = 0; sg = 1.0 - sw - so; double& rv = reservoir_state.rv()[cell_idx]; // use gas pressure? const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]); rv = rvSat*(1-epsilon); } break; } case HydroCarbonState::OilOnly: { if (sw > (1.0 - epsilon)) { // water only change to Sg rs = 0; rv = 0; reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil; //std::cout << "watonly rv -> sg" << cell_idx << std::endl; break; } const double& rsSat = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]); if (rs > ( rsSat * (1+epsilon) ) ) { reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil; sg = epsilon; so -= epsilon; rs = rsSat; } break; } case HydroCarbonState::GasOnly: { if (sw > (1.0 - epsilon)) { // water only change to Sg rs = 0; rv = 0; reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil; //std::cout << "watonly rv -> sg" << cell_idx << std::endl; break; } const double& rvSat = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), reservoir_state.temperature()[cell_idx], reservoir_state.pressure()[cell_idx]); if (rv > rvSat * (1+epsilon) ) { reservoir_state.hydroCarbonState()[cell_idx] = HydroCarbonState::GasAndOil; so = epsilon; rv = rvSat; sg -= epsilon; } break; } default: OPM_THROW(std::logic_error, "Unknown primary variable enum value in cell " << cell_idx << ": " << hydroCarbonState); } } } } /// Return true if output to cout is wanted. bool terminalOutputEnabled() const { return terminal_output_; } template double convergenceReduction(const CollectiveCommunication& comm, const long int ncGlobal, const int np, const std::vector< std::vector< Scalar > >& B, const std::vector< std::vector< Scalar > >& tempV, const std::vector< std::vector< Scalar > >& R, const std::vector< Scalar >& pv, const std::vector< Scalar >& residual_well, std::vector< Scalar >& R_sum, std::vector< Scalar >& maxCoeff, std::vector< Scalar >& B_avg, std::vector< Scalar >& maxNormWell ) { const int nw = residual_well.size() / np; assert(nw * np == int(residual_well.size())); // Do the global reductions B_avg.resize(np); maxCoeff.resize(np); R_sum.resize(np); maxNormWell.resize(np); // computation for ( int idx = 0; idx < np; ++idx ) { B_avg[idx] = std::accumulate( B[ idx ].begin(), B[ idx ].end(), 0.0 ) / double(ncGlobal); R_sum[idx] = std::accumulate( R[ idx ].begin(), R[ idx ].end(), 0.0 ); maxCoeff[idx] = *(std::max_element( tempV[ idx ].begin(), tempV[ idx ].end() )); assert(np >= np); if (idx < np) { maxNormWell[idx] = 0.0; for ( int w = 0; w < nw; ++w ) { maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_well[nw*idx + w])); } } } // Compute total pore volume double pvSum = std::accumulate(pv.begin(), pv.end(), 0.0); if( comm.size() > 1 ) { // global reduction std::vector< Scalar > sumBuffer; std::vector< Scalar > maxBuffer; sumBuffer.reserve( B_avg.size() + R_sum.size() + 1 ); maxBuffer.reserve( maxCoeff.size() + maxNormWell.size() ); for( int idx = 0; idx < np; ++idx ) { sumBuffer.push_back( B_avg[ idx ] ); sumBuffer.push_back( R_sum[ idx ] ); maxBuffer.push_back( maxCoeff[ idx ] ); maxBuffer.push_back( maxNormWell[ idx ] ); } // Compute total pore volume sumBuffer.push_back( pvSum ); // compute global sum comm.sum( sumBuffer.data(), sumBuffer.size() ); // compute global max comm.max( maxBuffer.data(), maxBuffer.size() ); // restore values to local variables for( int idx = 0, buffIdx = 0; idx < np; ++idx, ++buffIdx ) { B_avg[ idx ] = sumBuffer[ buffIdx ]; maxCoeff[ idx ] = maxBuffer[ buffIdx ]; ++buffIdx; R_sum[ idx ] = sumBuffer[ buffIdx ]; maxNormWell[ idx ] = maxBuffer[ buffIdx ]; } // restore global pore volume pvSum = sumBuffer.back(); } // return global pore volume return pvSum; } /// Compute convergence based on total mass balance (tol_mb) and maximum /// residual mass balance (tol_cnv). /// \param[in] timer simulation timer /// \param[in] dt timestep length /// \param[in] iteration current iteration number bool getConvergence(const SimulatorTimerInterface& timer, const int iteration, std::vector& residual_norms) { typedef std::vector< double > Vector; const double dt = timer.currentStepLength(); const double tol_mb = param_.tolerance_mb_; const double tol_cnv = param_.tolerance_cnv_; const double tol_wells = param_.tolerance_wells_; const int nc = Opm::AutoDiffGrid::numCells(grid_); const int np = numPhases(); const auto& pv = geo_.poreVolume(); Vector R_sum(np); Vector B_avg(np); Vector maxCoeff(np); Vector maxNormWell(np); std::vector< Vector > B( np, Vector( nc ) ); std::vector< Vector > R( np, Vector( nc ) ); std::vector< Vector > R2( np, Vector( nc ) ); std::vector< Vector > tempV( np, Vector( nc ) ); const auto& ebosResid = ebosSimulator_.model().linearizer().residual(); for ( int idx = 0; idx < np; ++idx ) { Vector& R2_idx = R2[ idx ]; Vector& B_idx = B[ idx ]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(idx); const int ebosCompIdx = flowPhaseToEbosCompIdx(idx); for (int cell_idx = 0; cell_idx < nc; ++cell_idx) { const auto& intQuants = *(ebosSimulator_.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0)); const auto& fs = intQuants.fluidState(); B_idx [cell_idx] = 1 / fs.invB(ebosPhaseIdx).value(); R2_idx[cell_idx] = ebosResid[cell_idx][ebosCompIdx]; } } for ( int idx = 0; idx < np; ++idx ) { //tempV.col(idx) = R2.col(idx).abs()/pv; Vector& tempV_idx = tempV[ idx ]; Vector& R2_idx = R2[ idx ]; for( int cell_idx = 0; cell_idx < nc; ++cell_idx ) { tempV_idx[ cell_idx ] = std::abs( R2_idx[ cell_idx ] ) / pv[ cell_idx ]; } } Vector pv_vector (geo_.poreVolume().data(), geo_.poreVolume().data() + geo_.poreVolume().size()); Vector wellResidual = wellModel().residual(); const double pvSum = convergenceReduction(grid_.comm(), global_nc_, np, B, tempV, R2, pv_vector, wellResidual, R_sum, maxCoeff, B_avg, maxNormWell ); Vector CNV(np); Vector mass_balance_residual(np); Vector well_flux_residual(np); bool converged_MB = true; bool converged_CNV = true; bool converged_Well = true; // Finish computation for ( int idx = 0; idx < np; ++idx ) { CNV[idx] = B_avg[idx] * dt * maxCoeff[idx]; mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum; converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb); converged_CNV = converged_CNV && (CNV[idx] < tol_cnv); // Well flux convergence is only for fluid phases, not other materials // in our current implementation. assert(np >= np); if (idx < np) { well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx]; converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells); } residual_norms.push_back(CNV[idx]); } const bool converged = converged_MB && converged_CNV && converged_Well; if ( terminal_output_ ) { // Only rank 0 does print to std::cout if (iteration == 0) { std::string msg = "Iter"; std::vector< std::string > key( np ); for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); key[ phaseIdx ] = std::toupper( phaseName.front() ); } for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { msg += " MB(" + key[ phaseIdx ] + ") "; } for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { msg += " CNV(" + key[ phaseIdx ] + ") "; } for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { msg += " W-FLUX(" + key[ phaseIdx ] + ")"; } OpmLog::note(msg); } std::ostringstream ss; const std::streamsize oprec = ss.precision(3); const std::ios::fmtflags oflags = ss.setf(std::ios::scientific); ss << std::setw(4) << iteration; for (int idx = 0; idx < np; ++idx) { ss << std::setw(11) << mass_balance_residual[idx]; } for (int idx = 0; idx < np; ++idx) { ss << std::setw(11) << CNV[idx]; } for (int idx = 0; idx < np; ++idx) { ss << std::setw(11) << well_flux_residual[idx]; } ss.precision(oprec); ss.flags(oflags); OpmLog::note(ss.str()); } for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) { const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx)); if (std::isnan(mass_balance_residual[phaseIdx]) || std::isnan(CNV[phaseIdx]) || (phaseIdx < np && std::isnan(well_flux_residual[phaseIdx]))) { OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName); } if (mass_balance_residual[phaseIdx] > maxResidualAllowed() || CNV[phaseIdx] > maxResidualAllowed() || (phaseIdx < np && well_flux_residual[phaseIdx] > maxResidualAllowed())) { OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName); } } return converged; } /// The number of active fluid phases in the model. int numPhases() const { return fluid_.numPhases(); } std::vector > computeFluidInPlace(const std::vector& fipnum) const { using namespace Opm::AutoDiffGrid; const int nc = numCells(grid_); //const ADB pv_mult = poroMult(pressure); const auto& pv = geo_.poreVolume(); const int maxnp = Opm::BlackoilPhases::MaxNumPhases; for (int i = 0; i<7; i++) { fip_.fip[i].resize(nc,0.0); } for (int c = 0; c < nc; ++c) { const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); for (int phase = 0; phase < maxnp; ++phase) { const double& b = fs.invB(flowPhaseToEbosPhaseIdx(phase)).value(); const double& s = fs.saturation(flowPhaseToEbosPhaseIdx(phase)).value(); const double pv_mult = 1.0; //todo fip_.fip[phase][c] = pv_mult * b * s * pv[c]; } if (active_[ Oil ] && active_[ Gas ]) { // Account for gas dissolved in oil and vaporized oil fip_.fip[FIPData::FIP_DISSOLVED_GAS][c] = fs.Rs().value() * fip_.fip[FIPData::FIP_LIQUID][c]; fip_.fip[FIPData::FIP_VAPORIZED_OIL][c] = fs.Rv().value() * fip_.fip[FIPData::FIP_VAPOUR][c]; } } // For a parallel run this is just a local maximum and needs to be updated later int dims = *std::max_element(fipnum.begin(), fipnum.end()); std::vector> values(dims, std::vector(7,0.0)); std::vector hcpv(dims, 0.0); std::vector pres(dims, 0.0); if ( !isParallel() ) { //Accumulate phases for each region for (int phase = 0; phase < maxnp; ++phase) { if (active_[ phase ]) { for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1) { values[region][phase] += fip_.fip[phase][c]; } } } } //Accumulate RS and RV-volumes for each region if (active_[ Oil ] && active_[ Gas ]) { for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1) { values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c]; values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c]; } } } for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1) { const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); hcpv[region] += pv[c] * hydrocarbon; pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value(); } } for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1) { fip_.fip[FIPData::FIP_PV][c] = pv[c]; const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); //Compute hydrocarbon pore volume weighted average pressure. //If we have no hydrocarbon in region, use pore volume weighted average pressure instead if (hcpv[region] != 0) { fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region]; } else { fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c]; } values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c]; values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c]; } } } else { #if HAVE_MPI // mask[c] is 1 if we need to compute something in parallel const auto & pinfo = boost::any_cast(istlSolver().parallelInformation()); const auto& mask = pinfo.getOwnerMask(); auto comm = pinfo.communicator(); // Compute the global dims value and resize values accordingly. dims = comm.max(dims); values.resize(dims, std::vector(7,0.0)); //Accumulate phases for each region for (int phase = 0; phase < maxnp; ++phase) { for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1 && mask[c]) { values[region][phase] += fip_.fip[phase][c]; } } } //Accumulate RS and RV-volumes for each region if (active_[ Oil ] && active_[ Gas ]) { for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1 && mask[c]) { values[region][FIPData::FIP_DISSOLVED_GAS] += fip_.fip[FIPData::FIP_DISSOLVED_GAS][c]; values[region][FIPData::FIP_VAPORIZED_OIL] += fip_.fip[FIPData::FIP_VAPORIZED_OIL][c]; } } } hcpv = std::vector(dims, 0.0); pres = std::vector(dims, 0.0); for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1 && mask[c]) { const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); hcpv[region] += pv[c] * hydrocarbon; pres[region] += pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value(); } } comm.sum(hcpv.data(), hcpv.size()); comm.sum(pres.data(), pres.size()); for (int c = 0; c < nc; ++c) { const int region = fipnum[c] - 1; if (region != -1 && mask[c]) { fip_.fip[FIPData::FIP_PV][c] = pv[c]; const auto& intQuants = *ebosSimulator_.model().cachedIntensiveQuantities(c, /*timeIdx=*/0); const auto& fs = intQuants.fluidState(); const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value(); if (hcpv[region] != 0) { fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pv[c] * fs.pressure(FluidSystem::oilPhaseIdx).value() * hydrocarbon / hcpv[region]; } else { fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c] = pres[region] / pv[c]; } values[region][FIPData::FIP_PV] += fip_.fip[FIPData::FIP_PV][c]; values[region][FIPData::FIP_WEIGHTED_PRESSURE] += fip_.fip[FIPData::FIP_WEIGHTED_PRESSURE][c]; } } // For the frankenstein branch we hopefully can turn values into a vanilla // std::vector, use some index magic above, use one communication // to sum up the vector entries instead of looping over the regions. for(int reg=0; reg < dims; ++reg) { comm.sum(values[reg].data(), values[reg].size()); } #else // This should never happen! OPM_THROW(std::logic_error, "HAVE_MPI should be defined if we are running in parallel"); #endif } return values; } const FIPData& getFIPData() const { return fip_; } const Simulator& ebosSimulator() const { return ebosSimulator_; } protected: const ISTLSolverType& istlSolver() const { assert( istlSolver_ ); return *istlSolver_; } // --------- Data members --------- Simulator& ebosSimulator_; const Grid& grid_; const ISTLSolverType* istlSolver_; const BlackoilPropsAdInterface& fluid_; const DerivedGeology& geo_; VFPProperties vfp_properties_; // For each canonical phase -> true if active const std::vector active_; // Size = # active phases. Maps active -> canonical phase indices. const std::vector cells_; // All grid cells const bool has_disgas_; const bool has_vapoil_; ModelParameters param_; // Well Model StandardWellsDense well_model_; /// \brief Whether we print something to std::cout bool terminal_output_; /// \brief The number of cells of the global grid. long int global_nc_; std::vector> residual_norms_history_; double current_relaxation_; BVector dx_old_; mutable FIPData fip_; // --------- Protected methods --------- public: /// return the StandardWells object StandardWellsDense& wellModel() { return well_model_; } const StandardWellsDense& wellModel() const { return well_model_; } /// return the Well struct in the StandardWells const Wells& wells() const { return well_model_.wells(); } /// return true if wells are available in the reservoir bool wellsActive() const { return well_model_.wellsActive(); } int numWells() const { return wellsActive() ? wells().number_of_wells : 0; } /// return true if wells are available on this process bool localWellsActive() const { return well_model_.localWellsActive(); } void convertInput( const int iterationIdx, const ReservoirState& reservoirState, Simulator& simulator ) const { SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ ); const Opm::PhaseUsage pu = fluid_.phaseUsage(); const int numCells = reservoirState.numCells(); const int numPhases = fluid_.numPhases(); const auto& oilPressure = reservoirState.pressure(); const auto& saturations = reservoirState.saturation(); const auto& rs = reservoirState.gasoilratio(); const auto& rv = reservoirState.rv(); for( int cellIdx = 0; cellIdx gas only with vaporized oil in the gas) is // relatively expensive as it requires to compute the capillary // pressure in order to get the gas phase pressure. (the reason why // ebos uses the gas pressure here is that it makes the common case // of the primary variable switching code fast because to determine // whether the oil phase appears one needs to compute the Rv value // for the saturated gas phase and if this is not available as a // primary variable, it needs to be computed.) luckily for here, the // gas-only case is not too common, so the performance impact of this // is limited. typedef Opm::SimpleModularFluidState SatOnlyFluidState; SatOnlyFluidState fluidState; fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]); fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]); fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]); double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 }; const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx); MaterialLaw::capillaryPressures(pC, matParams, fluidState); double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]); cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx]; cellPv[BlackoilIndices::pressureSwitchIdx] = pg; cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv ); } else { assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil); cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]]; cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ]; cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg ); } } else { // for oil-water case oil pressure should be used as primary variable cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx]; } } if( iterationIdx == 0 ) { simulator.model().solution( 1 /* timeIdx */ ) = solution; } } public: int ebosCompToFlowPhaseIdx( const int compIdx ) const { const int compToPhase[ 3 ] = { Oil, Water, Gas }; return compToPhase[ compIdx ]; } int flowToEbosPvIdx( const int flowPv ) const { const int flowToEbos[ 3 ] = { BlackoilIndices::pressureSwitchIdx, BlackoilIndices::waterSaturationIdx, BlackoilIndices::compositionSwitchIdx }; return flowToEbos[ flowPv ]; } int flowPhaseToEbosCompIdx( const int phaseIdx ) const { const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx }; return phaseToComp[ phaseIdx ]; } private: void convertResults(BVector& ebosResid, Mat& ebosJac) const { const Opm::PhaseUsage pu = fluid_.phaseUsage(); const int numFlowPhases = pu.num_phases; const int numCells = ebosJac.N(); assert( numCells == static_cast(ebosJac.M()) ); // write the right-hand-side values from the ebosJac into the objects // allocated above. const auto endrow = ebosJac.end(); for( int cellIdx = 0; cellIdx < numCells; ++cellIdx ) { const double cellVolume = ebosSimulator_.model().dofTotalVolume(cellIdx); auto& cellRes = ebosResid[ cellIdx ]; for( int flowPhaseIdx = 0; flowPhaseIdx < numFlowPhases; ++flowPhaseIdx ) { const int canonicalFlowPhaseIdx = pu.phase_pos[flowPhaseIdx]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(canonicalFlowPhaseIdx); const double refDens = FluidSystem::referenceDensity(ebosPhaseIdx, 0); cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] /= refDens; cellRes[ flowPhaseToEbosCompIdx( flowPhaseIdx ) ] *= cellVolume; } } for( auto row = ebosJac.begin(); row != endrow; ++row ) { const int rowIdx = row.index(); const double cellVolume = ebosSimulator_.model().dofTotalVolume(rowIdx); // translate the Jacobian of the residual from the format used by ebos to // the one expected by flow const auto endcol = row->end(); for( auto col = row->begin(); col != endcol; ++col ) { for( int flowPhaseIdx = 0; flowPhaseIdx < numFlowPhases; ++flowPhaseIdx ) { const int canonicalFlowPhaseIdx = pu.phase_pos[flowPhaseIdx]; const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(canonicalFlowPhaseIdx); const int ebosCompIdx = flowPhaseToEbosCompIdx(canonicalFlowPhaseIdx); const double refDens = FluidSystem::referenceDensity(ebosPhaseIdx, 0); for( int pvIdx=0; pvIdx