// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- // vi: set et ts=4 sw=4 sts=4: /* This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . Consult the COPYING file in the top-level source directory of this module for the precise wording of the license and the list of copyright holders. */ /*! * \file * * \copydoc Opm::BlackOilBoundaryRateVector */ #ifndef EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH #define EWOMS_BLACK_OIL_BOUNDARY_RATE_VECTOR_HH #include #include #include "blackoilintensivequantities.hh" #include "blackoilenergymodules.hh" namespace Opm { /*! * \ingroup BlackOilModel * * \brief Implements a boundary vector for the fully implicit black-oil model. */ template class BlackOilBoundaryRateVector : public GetPropType { using ParentType = GetPropType; using ExtensiveQuantities = GetPropType; using FluidSystem = GetPropType; using LocalResidual = GetPropType; using Scalar = GetPropType; using Evaluation = GetPropType; using RateVector = GetPropType; using Indices = GetPropType; enum { numEq = getPropValue() }; enum { numPhases = getPropValue() }; enum { numComponents = getPropValue() }; enum { enableSolvent = getPropValue() }; enum { enablePolymer = getPropValue() }; enum { enableEnergy = getPropValue() }; enum { conti0EqIdx = Indices::conti0EqIdx }; enum { contiEnergyEqIdx = Indices::contiEnergyEqIdx }; enum { enableFoam = getPropValue() }; enum { enableMICP = getPropValue() }; static constexpr bool blackoilConserveSurfaceVolume = getPropValue(); using EnergyModule = BlackOilEnergyModule; public: /*! * \brief Default constructor */ BlackOilBoundaryRateVector() : ParentType() {} /*! * \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(Scalar) */ BlackOilBoundaryRateVector(Scalar value) : ParentType(value) {} /*! * \copydoc ImmiscibleBoundaryRateVector::ImmiscibleBoundaryRateVector(const ImmiscibleBoundaryRateVector& ) */ BlackOilBoundaryRateVector(const BlackOilBoundaryRateVector& value) = default; BlackOilBoundaryRateVector& operator=(const BlackOilBoundaryRateVector& value) = default; /*! * \copydoc ImmiscibleBoundaryRateVector::setFreeFlow */ template void setFreeFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { ExtensiveQuantities extQuants; extQuants.updateBoundary(context, bfIdx, timeIdx, fluidState); const auto& insideIntQuants = context.intensiveQuantities(bfIdx, timeIdx); unsigned focusDofIdx = context.focusDofIndex(); unsigned interiorDofIdx = context.interiorScvIndex(bfIdx, timeIdx); //////// // advective fluxes of all components in all phases //////// (*this) = 0.0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!FluidSystem::phaseIsActive(phaseIdx)) { continue; } const auto& pBoundary = fluidState.pressure(phaseIdx); const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx); RateVector tmp; // mass conservation if (pBoundary < pInside) // outflux LocalResidual::template evalPhaseFluxes_(tmp, phaseIdx, insideIntQuants.pvtRegionIndex(), extQuants, insideIntQuants.fluidState()); else if (pBoundary > pInside) { using RhsEval = typename std::conditional::value, Evaluation, Scalar>::type; // influx LocalResidual::template evalPhaseFluxes_(tmp, phaseIdx, insideIntQuants.pvtRegionIndex(), extQuants, fluidState); } for (unsigned i = 0; i < tmp.size(); ++i) (*this)[i] += tmp[i]; // energy conservation if constexpr (enableEnergy) { Evaluation density; Evaluation specificEnthalpy; if (pBoundary > pInside) { if (focusDofIdx == interiorDofIdx) { density = fluidState.density(phaseIdx); specificEnthalpy = fluidState.enthalpy(phaseIdx); } else { density = getValue(fluidState.density(phaseIdx)); specificEnthalpy = getValue(fluidState.enthalpy(phaseIdx)); } } else if (focusDofIdx == interiorDofIdx) { density = insideIntQuants.fluidState().density(phaseIdx); specificEnthalpy = insideIntQuants.fluidState().enthalpy(phaseIdx); } else { density = getValue(insideIntQuants.fluidState().density(phaseIdx)); specificEnthalpy = getValue(insideIntQuants.fluidState().enthalpy(phaseIdx)); } Evaluation enthalpyRate = density*extQuants.volumeFlux(phaseIdx)*specificEnthalpy; EnergyModule::addToEnthalpyRate(*this, enthalpyRate*getPropValue()); } } if constexpr (enableSolvent) { (*this)[Indices::contiSolventEqIdx] = extQuants.solventVolumeFlux(); if (blackoilConserveSurfaceVolume) (*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventInverseFormationVolumeFactor(); else (*this)[Indices::contiSolventEqIdx] *= insideIntQuants.solventDensity(); } if constexpr (enablePolymer) { (*this)[Indices::contiPolymerEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.polymerConcentration(); } if constexpr (enableMICP) { (*this)[Indices::contiMicrobialEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.microbialConcentration(); (*this)[Indices::contiOxygenEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.oxygenConcentration(); (*this)[Indices::contiUreaEqIdx] = extQuants.volumeFlux(FluidSystem::waterPhaseIdx) * insideIntQuants.ureaConcentration(); } // make sure that the right mass conservation quantities are used LocalResidual::adaptMassConservationQuantities_(*this, insideIntQuants.pvtRegionIndex()); // heat conduction if constexpr (enableEnergy) EnergyModule::addToEnthalpyRate(*this, extQuants.energyFlux()*getPropValue()); #ifndef NDEBUG for (unsigned i = 0; i < numEq; ++i) { Valgrind::CheckDefined((*this)[i]); } Valgrind::CheckDefined(*this); #endif } /*! * \copydoc ImmiscibleBoundaryRateVector::setInFlow */ template void setInFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { this->setFreeFlow(context, bfIdx, timeIdx, fluidState); // we only allow fluxes in the direction opposite to the outer // unit normal for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) { Scalar& val = this->operator[](eqIdx); val = std::min(0.0, val); } } /*! * \copydoc ImmiscibleBoundaryRateVector::setOutFlow */ template void setOutFlow(const Context& context, unsigned bfIdx, unsigned timeIdx, const FluidState& fluidState) { this->setFreeFlow(context, bfIdx, timeIdx, fluidState); // we only allow fluxes in the same direction as the outer // unit normal for (unsigned eqIdx = 0; eqIdx < numEq; ++eqIdx) { Scalar& val = this->operator[](eqIdx); val = std::max( Scalar(0), val); } } /*! * \copydoc ImmiscibleBoundaryRateVector::setNoFlow */ void setNoFlow() { (*this) = Scalar(0); } /*! * \copydoc Specify an energy flux that corresponds to the thermal conduction from * the domain boundary * * This means that a "thermal flow" boundary is a no-flow condition for mass and thermal * conduction for energy. */ template void setThermalFlow([[maybe_unused]] const Context& context, [[maybe_unused]] unsigned bfIdx, [[maybe_unused]] unsigned timeIdx, [[maybe_unused]] const FluidState& boundaryFluidState) { // set the mass no-flow condition setNoFlow(); // if we do not conserve energy there is nothing we should do in addition if constexpr (enableEnergy) { ExtensiveQuantities extQuants; extQuants.updateBoundary(context, bfIdx, timeIdx, boundaryFluidState); (*this)[contiEnergyEqIdx] += extQuants.energyFlux(); #ifndef NDEBUG for (unsigned i = 0; i < numEq; ++i) Valgrind::CheckDefined((*this)[i]); Valgrind::CheckDefined(*this); #endif } } }; } // namespace Opm #endif