/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ----------------- Main program ----------------- int main(int argc, char** argv) try { using namespace Opm; // std::cout << "\n================ Test program for single-cell solves with polymer ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); param.disableOutput(); // std::cout << "--------------- Reading parameters ---------------" << std::endl; boost::scoped_ptr grid; boost::scoped_ptr props; std::unique_ptr state; Opm::PolymerProperties poly_props; // bool check_well_controls = false; // int max_well_control_iterations = 0; // -------- Initialising section ---------- // Grid init. grid.reset(new GridManager(2, 1, 1, 1.0, 1.0, 1.0)); // Rock and fluid init. { const UnstructuredGrid& ug_grid = *(grid->c_grid()); state.reset( new PolymerState( UgGridHelpers::numCells( ug_grid ) , UgGridHelpers::numFaces( ug_grid ), 2)); props.reset(new IncompPropertiesBasic(param, ug_grid.dimensions, UgGridHelpers::numCells( ug_grid ))); // Init state variables (saturation and pressure). initStateBasic(*grid->c_grid(), *props, param, 0.0, *state); // Init Polymer state if (param.has("poly_init")) { double poly_init = param.getDefault("poly_init", 0.0); for (int cell = 0; cell < grid->c_grid()->number_of_cells; ++cell) { double smin[2], smax[2]; props->satRange(1, &cell, smin, smax); auto& saturation = state->saturation(); auto& concentration = state->getCellData( state->CONCENTRATION ); auto& max_concentration = state->getCellData( state->CMAX ); props->satRange(1, &cell, smin, smax); if (saturation[2*cell] > 0.5*(smin[0] + smax[0])) { concentration[cell] = poly_init; max_concentration[cell] = poly_init; } else { saturation[2*cell + 0] = 0.; saturation[2*cell + 1] = 1.; concentration[cell] = 0.; max_concentration[cell] = 0.; } } } } // Init polymer properties. // Setting defaults to provide a simple example case. double c_max = param.getDefault("c_max_limit", 5.0); double mix_param = param.getDefault("mix_param", 1.0); double rock_density = param.getDefault("rock_density", 1000.0); double dead_pore_vol = param.getDefault("dead_pore_vol", 0.0); // Note that we default to no dps here! double res_factor = param.getDefault("res_factor", 1.) ; // res_factor = 1 gives no change in permeability double c_max_ads = param.getDefault("c_max_ads", 1.); int ads_index = param.getDefault("ads_index", Opm::PolymerProperties::NoDesorption); std::vector c_vals_visc(2, -1e100); c_vals_visc[0] = 0.0; c_vals_visc[1] = 7.0; std::vector visc_mult_vals(2, -1e100); visc_mult_vals[0] = 1.0; // poly_props.visc_mult_vals[1] = param.getDefault("c_max_viscmult", 30.0); visc_mult_vals[1] = 20.0; std::vector c_vals_ads(3, -1e100); c_vals_ads[0] = 0.0; c_vals_ads[1] = 2.0; c_vals_ads[2] = 8.0; std::vector ads_vals(3, -1e100); ads_vals[0] = 0.0; ads_vals[1] = 0.0015; ads_vals[2] = 0.0025; // ads_vals[1] = 0.0; // ads_vals[2] = 0.0; std::vector water_vel_vals(2, -1e100); water_vel_vals[0] = 0.0; water_vel_vals[1] = 10.0; std::vector shear_vrf_vals(2, -1e100); shear_vrf_vals[0] = 1.0; shear_vrf_vals[1] = 1.0; poly_props.set(c_max, mix_param, rock_density, dead_pore_vol, res_factor, c_max_ads, static_cast(ads_index), c_vals_visc, visc_mult_vals, c_vals_ads, ads_vals, water_vel_vals, shear_vrf_vals); // Initialising src int num_cells = grid->c_grid()->number_of_cells; std::vector src(num_cells, 0.0); // Compute pore volumes, in order to enable specifying injection rate // terms of total pore volume. std::vector porevol; computePorevolume(*grid->c_grid(), props->porosity(), porevol); const double default_injection = 1.0; const double flow_per_sec = param.getDefault("injected_porevolumes_per_sec", default_injection) *porevol[0]; src[0] = flow_per_sec; src[num_cells - 1] = -flow_per_sec; // Boundary conditions. FlowBCManager bcs; // Linear solver. LinearSolverFactory linsolver(param); // Reordering solver. const double nl_tolerance = param.getDefault("nl_tolerance", 1e-9); const int nl_maxiter = param.getDefault("nl_maxiter", 30); Opm::TransportSolverTwophasePolymer::SingleCellMethod method; std::string method_string = param.getDefault("single_cell_method", std::string("Bracketing")); if (method_string == "Bracketing") { method = Opm::TransportSolverTwophasePolymer::Bracketing; } else if (method_string == "Newton") { method = Opm::TransportSolverTwophasePolymer::Newton; } else if (method_string == "Gradient") { method = Opm::TransportSolverTwophasePolymer::Gradient; } else if (method_string == "NewtonSimpleSC") { method = Opm::TransportSolverTwophasePolymer::NewtonSimpleSC; } else if (method_string == "NewtonSimpleC") { method = Opm::TransportSolverTwophasePolymer::NewtonSimpleC; } else { OPM_THROW(std::runtime_error, "Unknown method: " << method_string); } Opm::TransportSolverTwophasePolymer reorder_model(*grid->c_grid(), *props, poly_props, method, nl_tolerance, nl_maxiter); // Warn if any parameters are unused. // if (param.anyUnused()) { // std::cout << "-------------------- Unused parameters: --------------------\n"; // param.displayUsage(); // std::cout << "----------------------------------------------------------------" << std::endl; // } // Write parameters to file for later reference. param.writeParam("test_singlecellsolves.param"); // Setting up a number of input (s, c) pairs and solving. // HACK warning: we manipulate the source term, // but the compressibility term in the solver // assumes that all inflow is water inflow. Therefore // one must zero the compressibility term in // TransportSolverTwophasePolymer line 365 before compiling this program. // (To fix this we should add proper all-phase src terms.) std::vector transport_src = src; const double dt = param.getDefault("dt", 1.0); const int num_sats = 501; const int num_concs = 501; // Find the face between cell 0 and 1... const UnstructuredGrid& ug = *grid->c_grid(); int face01 = -1; for (int f = 0; f < ug.number_of_faces; ++f) { if (ug.face_cells[2*f] == 0 && ug.face_cells[2*f+1] == 1) { face01 = f; break; } } if (face01 == -1) { OPM_THROW(std::runtime_error, "Could not find face adjacent to cells [0 1]"); } state->faceflux()[face01] = src[0]; for (int sats = 0; sats < num_sats; ++sats) { const double s = double(sats)/double(num_sats - 1); const double ff = s; // Simplified a lot... for (int conc = 0; conc < num_concs; ++conc) { const double c = poly_props.cMax()*double(conc)/double(num_concs - 1); std::vector polymer_inflow_c(num_cells, c); // std::cout << "(s, c) = (" << s << ", " << c << ")\n"; transport_src[0] = src[0]*ff; // Resetting the state for next run. auto& saturation = state->saturation(); auto& concentration = state->getCellData( state->CONCENTRATION ); auto& max_concentration = state->getCellData( state->CMAX ); saturation[0] = 0.0; saturation[1] = 0.0; concentration[0] = 0.0; concentration[1] = 0.0; max_concentration[0] = 0.0; max_concentration[1] = 0.0; reorder_model.solve(&state->faceflux()[0], &porevol[0], &transport_src[0], &polymer_inflow_c[0], dt, saturation, concentration, max_concentration); #ifdef PROFILING // Extract residual counts. typedef std::list ListRes; const ListRes& res_counts = reorder_model.res_counts; double counts[2] = { 0, 0 }; for (ListRes::const_iterator it = res_counts.begin(); it != res_counts.end(); ++it) { if (it->cell == 0) { ++counts[it->res_s]; } } // std::cout << "c residual count: " << counts[0] << '\n'; // std::cout << "s residual count: " << counts[1] << '\n'; std::cout << counts[0] << ' ' << counts[1] << ' ' << s << ' ' << c << '\n'; #endif } } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }