/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2018 IRIS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template WellInterfaceFluidSystem:: WellInterfaceFluidSystem(const Well& well, const ParallelWellInfo& parallel_well_info, const int time_step, const RateConverterType& rate_converter, const int pvtRegionIdx, const int num_components, const int num_phases, const int index_of_well, const std::vector& perf_data) : WellInterfaceGeneric(well, parallel_well_info, time_step, pvtRegionIdx, num_components, num_phases, index_of_well, perf_data) , rateConverter_(rate_converter) { } template void WellInterfaceFluidSystem:: calculateReservoirRates(SingleWellState& ws) const { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); for (int p = 0; p < np; ++p) { surface_rates[p] = ws.surface_rates[p]; } std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); ws.reservoir_rates = voidage_rates; } template Well::ProducerCMode WellInterfaceFluidSystem:: activeProductionConstraint(const SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const PhaseUsage& pu = this->phaseUsage(); const auto controls = this->well_ecl_.productionControls(summaryState); const auto currentControl = ws.production_cmode; if (controls.hasControl(Well::ProducerCMode::BHP) && currentControl != Well::ProducerCMode::BHP) { const double bhp_limit = controls.bhp_limit; double current_bhp = ws.bhp; if (bhp_limit > current_bhp) return Well::ProducerCMode::BHP; } if (controls.hasControl(Well::ProducerCMode::ORAT) && currentControl != Well::ProducerCMode::ORAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]]; if (controls.oil_rate < current_rate) return Well::ProducerCMode::ORAT; } if (controls.hasControl(Well::ProducerCMode::WRAT) && currentControl != Well::ProducerCMode::WRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (controls.water_rate < current_rate) return Well::ProducerCMode::WRAT; } if (controls.hasControl(Well::ProducerCMode::GRAT) && currentControl != Well::ProducerCMode::GRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]]; if (controls.gas_rate < current_rate) return Well::ProducerCMode::GRAT; } if (controls.hasControl(Well::ProducerCMode::LRAT) && currentControl != Well::ProducerCMode::LRAT) { double current_rate = -ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]]; current_rate -= ws.surface_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (controls.liquid_rate < current_rate) return Well::ProducerCMode::LRAT; } if (controls.hasControl(Well::ProducerCMode::RESV) && currentControl != Well::ProducerCMode::RESV) { double current_rate = 0.0; if (pu.phase_used[BlackoilPhases::Aqua]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]]; if (pu.phase_used[BlackoilPhases::Liquid]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]]; if (pu.phase_used[BlackoilPhases::Vapour]) current_rate -= ws.reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]]; if (controls.prediction_mode && controls.resv_rate < current_rate) return Well::ProducerCMode::RESV; if (!controls.prediction_mode) { const int fipreg = 0; // not considering the region for now const int np = number_of_phases_; std::vector surface_rates(np, 0.0); if (pu.phase_used[BlackoilPhases::Aqua]) surface_rates[pu.phase_pos[BlackoilPhases::Aqua]] = controls.water_rate; if (pu.phase_used[BlackoilPhases::Liquid]) surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.oil_rate; if (pu.phase_used[BlackoilPhases::Vapour]) surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.gas_rate; std::vector voidage_rates(np, 0.0); rateConverter_.calcReservoirVoidageRates(fipreg, pvtRegionIdx_, surface_rates, voidage_rates); double resv_rate = 0.0; for (int p = 0; p < np; ++p) resv_rate += voidage_rates[p]; if (resv_rate < current_rate) return Well::ProducerCMode::RESV; } } if (controls.hasControl(Well::ProducerCMode::THP) && currentControl != Well::ProducerCMode::THP) { const auto& thp = getTHPConstraint(summaryState); double current_thp = ws.thp; if (thp > current_thp && !ws.trivial_target) { // If WVFPEXP item 4 is set to YES1 or YES2 // switching to THP is prevented if the well will // produce at a higher rate with THP control const auto& wvfpexp = this->well_ecl_.getWVFPEXP(); bool rate_less_than_potential = true; if (wvfpexp.prevent()) { for (int p = 0; p < number_of_phases_; ++p) { // Currently we use the well potentials here computed before the iterations. // We may need to recompute the well potentials to get a more // accurate check here. rate_less_than_potential = rate_less_than_potential && (-ws.surface_rates[p]) <= ws.well_potentials[p]; } } if(!wvfpexp.prevent() || !rate_less_than_potential) { this->operability_status_.thp_limit_violated_but_not_switched = false; return Well::ProducerCMode::THP; } else { this->operability_status_.thp_limit_violated_but_not_switched = true; deferred_logger.debug("NOT_SWITCHING_TO_THP", "The THP limit is violated for producer " + this->name() + ". But the rate will increase if switched to THP. " + "The well is therefore kept at " + Well::ProducerCMode2String(currentControl)); } } } return currentControl; } template Well::InjectorCMode WellInterfaceFluidSystem:: activeInjectionConstraint(const SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const PhaseUsage& pu = this->phaseUsage(); const auto controls = this->well_ecl_.injectionControls(summaryState); const auto currentControl = ws.injection_cmode; if (controls.hasControl(Well::InjectorCMode::BHP) && currentControl != Well::InjectorCMode::BHP) { const auto& bhp = controls.bhp_limit; double current_bhp = ws.bhp; if (bhp < current_bhp) return Well::InjectorCMode::BHP; } if (controls.hasControl(Well::InjectorCMode::RATE) && currentControl != Well::InjectorCMode::RATE) { InjectorType injectorType = controls.injector_type; double current_rate = 0.0; switch (injectorType) { case InjectorType::WATER: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Aqua] ]; break; } case InjectorType::OIL: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Liquid] ]; break; } case InjectorType::GAS: { current_rate = ws.surface_rates[ pu.phase_pos[BlackoilPhases::Vapour] ]; break; } default: throw("Expected WATER, OIL or GAS as type for injectors " + this->well_ecl_.name()); } if (controls.surface_rate < current_rate) return Well::InjectorCMode::RATE; } if (controls.hasControl(Well::InjectorCMode::RESV) && currentControl != Well::InjectorCMode::RESV) { double current_rate = 0.0; if( pu.phase_used[BlackoilPhases::Aqua] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Aqua] ]; if( pu.phase_used[BlackoilPhases::Liquid] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Liquid] ]; if( pu.phase_used[BlackoilPhases::Vapour] ) current_rate += ws.reservoir_rates[ pu.phase_pos[BlackoilPhases::Vapour] ]; if (controls.reservoir_rate < current_rate) return Well::InjectorCMode::RESV; } if (controls.hasControl(Well::InjectorCMode::THP) && currentControl != Well::InjectorCMode::THP) { const auto& thp = getTHPConstraint(summaryState); double current_thp = ws.thp; if (thp < current_thp) { bool rate_less_than_potential = true; for (int p = 0; p < number_of_phases_; ++p) { // Currently we use the well potentials here computed before the iterations. // We may need to recompute the well potentials to get a more // accurate check here. rate_less_than_potential = rate_less_than_potential && (ws.surface_rates[p]) <= ws.well_potentials[p]; } if(!rate_less_than_potential) { this->operability_status_.thp_limit_violated_but_not_switched = false; return Well::InjectorCMode::THP; } else { this->operability_status_.thp_limit_violated_but_not_switched = true; deferred_logger.debug("NOT_SWITCHING_TO_THP", "The THP limit is violated for injector " + this->name() + ". But the rate will increase if switched to THP. " + "The well is therefore kept at " + Well::InjectorCMode2String(currentControl)); } } } return currentControl; } template bool WellInterfaceFluidSystem:: checkIndividualConstraints(SingleWellState& ws, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { if (this->well_ecl_.isProducer()) { auto new_cmode = this->activeProductionConstraint(ws, summaryState, deferred_logger); if (new_cmode != ws.production_cmode) { ws.production_cmode = new_cmode; return true; } } if (this->well_ecl_.isInjector()) { auto new_cmode = this->activeInjectionConstraint(ws, summaryState, deferred_logger); if (new_cmode != ws.injection_cmode) { ws.injection_cmode = new_cmode; return true; } } return false; } template std::pair WellInterfaceFluidSystem:: checkGroupConstraintsInj(const Group& group, const WellState& well_state, const GroupState& group_state, const double efficiencyFactor, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { // Translate injector type from control to Phase. const auto& well_controls = this->well_ecl_.injectionControls(summaryState); auto injectorType = well_controls.injector_type; Phase injectionPhase; switch (injectorType) { case InjectorType::WATER: { injectionPhase = Phase::WATER; break; } case InjectorType::OIL: { injectionPhase = Phase::OIL; break; } case InjectorType::GAS: { injectionPhase = Phase::GAS; break; } default: throw("Expected WATER, OIL or GAS as type for injector " + name()); } // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(phaseUsage().num_phases, 1.0); rateConverter_.calcInjCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. const auto& ws = well_state.well(this->index_of_well_); // Call check for the well's injection phase. return WellGroupHelpers::checkGroupConstraintsInj(name(), well_ecl_.groupName(), group, well_state, group_state, current_step_, guide_rate_, ws.surface_rates.data(), injectionPhase, phaseUsage(), efficiencyFactor, schedule, summaryState, resv_coeff, deferred_logger); } template std::pair WellInterfaceFluidSystem:: checkGroupConstraintsProd(const Group& group, const WellState& well_state, const GroupState& group_state, const double efficiencyFactor, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(this->phaseUsage().num_phases, 1.0); rateConverter_.calcCoeff(0, pvtRegionIdx_, resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. const auto& ws = well_state.well(this->index_of_well_); return WellGroupHelpers::checkGroupConstraintsProd(name(), well_ecl_.groupName(), group, well_state, group_state, current_step_, guide_rate_, ws.surface_rates.data(), phaseUsage(), efficiencyFactor, schedule, summaryState, resv_coeff, deferred_logger); } template bool WellInterfaceFluidSystem:: checkGroupConstraints(WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const auto& well = well_ecl_; const int well_index = index_of_well_; auto& ws = well_state.well(well_index); if (well.isInjector()) { const auto currentControl = ws.injection_cmode; if (currentControl != Well::InjectorCMode::GRUP) { // This checks only the first encountered group limit, // in theory there could be several, and then we should // test all but the one currently applied. At that point, // this if-statement should be removed and we should always // check, skipping over only the single group parent whose // control is the active one for the well (if any). const auto& group = schedule.getGroup( well.groupName(), current_step_ ); const double efficiencyFactor = well.getEfficiencyFactor(); const std::pair group_constraint = checkGroupConstraintsInj(group, well_state, group_state, efficiencyFactor, schedule, summaryState, deferred_logger); // If a group constraint was broken, we set the current well control to // be GRUP. if (group_constraint.first) { ws.injection_cmode = Well::InjectorCMode::GRUP; const int np = well_state.numPhases(); for (int p = 0; p group_constraint = checkGroupConstraintsProd(group, well_state, group_state, efficiencyFactor, schedule, summaryState, deferred_logger); // If a group constraint was broken, we set the current well control to // be GRUP. if (group_constraint.first) { ws.production_cmode = Well::ProducerCMode::GRUP; const int np = well_state.numPhases(); for (int p = 0; p bool WellInterfaceFluidSystem:: checkConstraints(WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger) const { const bool ind_broken = checkIndividualConstraints(well_state.well(this->index_of_well_), summaryState, deferred_logger); if (ind_broken) { return true; } else { return checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger); } } template bool WellInterfaceFluidSystem:: checkRateEconLimits(const WellEconProductionLimits& econ_production_limits, const double* rates_or_potentials, DeferredLogger& deferred_logger) const { const PhaseUsage& pu = phaseUsage(); if (econ_production_limits.onMinOilRate()) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ]; const double min_oil_rate = econ_production_limits.minOilRate(); if (std::abs(oil_rate) < min_oil_rate) { return true; } } if (econ_production_limits.onMinGasRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); const double gas_rate = rates_or_potentials[pu.phase_pos[ Gas ] ]; const double min_gas_rate = econ_production_limits.minGasRate(); if (std::abs(gas_rate) < min_gas_rate) { return true; } } if (econ_production_limits.onMinLiquidRate() ) { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); const double oil_rate = rates_or_potentials[pu.phase_pos[ Oil ] ]; const double water_rate = rates_or_potentials[pu.phase_pos[ Water ] ]; const double liquid_rate = oil_rate + water_rate; const double min_liquid_rate = econ_production_limits.minLiquidRate(); if (std::abs(liquid_rate) < min_liquid_rate) { return true; } } if (econ_production_limits.onMinReservoirFluidRate()) { deferred_logger.warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet"); } return false; } template void WellInterfaceFluidSystem:: checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits, const SingleWellState& ws, RatioLimitCheckReport& report) const { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); // function to calculate water cut based on rates auto waterCut = [](const std::vector& rates, const PhaseUsage& pu) { const double oil_rate = -rates[pu.phase_pos[Oil]]; const double water_rate = -rates[pu.phase_pos[Water]]; const double liquid_rate = oil_rate + water_rate; if (liquid_rate <= 0.) return 0.; else if (water_rate < 0) return 0.; else if (oil_rate < 0) return 1.; else return (water_rate / liquid_rate); }; const double max_water_cut_limit = econ_production_limits.maxWaterCut(); assert(max_water_cut_limit > 0.); const bool watercut_limit_violated = checkMaxRatioLimitWell(ws, max_water_cut_limit, waterCut); if (watercut_limit_violated) { report.ratio_limit_violated = true; checkMaxRatioLimitCompletions(ws, max_water_cut_limit, waterCut, report); } } template void WellInterfaceFluidSystem:: checkMaxGORLimit(const WellEconProductionLimits& econ_production_limits, const SingleWellState& ws, RatioLimitCheckReport& report) const { assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); // function to calculate gor based on rates auto gor = [](const std::vector& rates, const PhaseUsage& pu) { const double oil_rate = -rates[pu.phase_pos[Oil]]; const double gas_rate = -rates[pu.phase_pos[Gas]]; if (gas_rate <= 0.) return 0.; else if (oil_rate <= 0.) return 1.e100; // big value to mark it as violated else return (gas_rate / oil_rate); }; const double max_gor_limit = econ_production_limits.maxGasOilRatio(); assert(max_gor_limit > 0.); const bool gor_limit_violated = checkMaxRatioLimitWell(ws, max_gor_limit, gor); if (gor_limit_violated) { report.ratio_limit_violated = true; checkMaxRatioLimitCompletions(ws, max_gor_limit, gor, report); } } template void WellInterfaceFluidSystem:: checkMaxWGRLimit(const WellEconProductionLimits& econ_production_limits, const SingleWellState& ws, RatioLimitCheckReport& report) const { assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)); assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)); // function to calculate wgr based on rates auto wgr = [](const std::vector& rates, const PhaseUsage& pu) { const double water_rate = -rates[pu.phase_pos[Water]]; const double gas_rate = -rates[pu.phase_pos[Gas]]; if (water_rate <= 0.) return 0.; else if (gas_rate <= 0.) return 1.e100; // big value to mark it as violated else return (water_rate / gas_rate); }; const double max_wgr_limit = econ_production_limits.maxWaterGasRatio(); assert(max_wgr_limit > 0.); const bool wgr_limit_violated = checkMaxRatioLimitWell(ws, max_wgr_limit, wgr); if (wgr_limit_violated) { report.ratio_limit_violated = true; checkMaxRatioLimitCompletions(ws, max_wgr_limit, wgr, report); } } template void WellInterfaceFluidSystem:: checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits, const SingleWellState& ws, RatioLimitCheckReport& report, DeferredLogger& deferred_logger) const { // TODO: not sure how to define the worst-offending completion when more than one // ratio related limit is violated. // The defintion used here is that we define the violation extent based on the // ratio between the value and the corresponding limit. // For each violated limit, we decide the worst-offending completion separately. // Among the worst-offending completions, we use the one has the biggest violation // extent. if (econ_production_limits.onMaxWaterCut()) { checkMaxWaterCutLimit(econ_production_limits, ws, report); } if (econ_production_limits.onMaxGasOilRatio()) { checkMaxGORLimit(econ_production_limits, ws, report); } if (econ_production_limits.onMaxWaterGasRatio()) { checkMaxWGRLimit(econ_production_limits, ws, report); } if (econ_production_limits.onMaxGasLiquidRatio()) { deferred_logger.warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!"); } if (report.ratio_limit_violated) { // No worst offending completion is found because all the completions are either injecting or // have trivial rates. if(report.worst_offending_completion == INVALIDCOMPLETION) { std::string message = "The well ratio limit is violated but all the completion rates are trivial! " + this->name() + " is kept open"; deferred_logger.warning("WECON_INVALIDCOMPLETION", message); report.ratio_limit_violated = false; } // Due to numerical instability there may exist corner cases where the well breaks // the ratio limit but no completion does. else if(report.violation_extent <= 1.) { std::string message = "The well ratio limit is violated but no completion ratio limit is violated! " + this->name() + " is kept open"; deferred_logger.warning("WECON_INCONSISTANT_COMPLETION_WELL", message); report.ratio_limit_violated = false; } } } template void WellInterfaceFluidSystem:: updateWellTestStateEconomic(const SingleWellState& ws, const double simulation_time, const bool write_message_to_opmlog, WellTestState& well_test_state, DeferredLogger& deferred_logger) const { if (this->wellIsStopped()) return; const WellEconProductionLimits& econ_production_limits = well_ecl_.getEconLimits(); // if no limit is effective here, then continue to the next well if ( !econ_production_limits.onAnyEffectiveLimit() ) { return; } // flag to check if the mim oil/gas rate limit is violated bool rate_limit_violated = false; const auto& quantity_limit = econ_production_limits.quantityLimit(); if (econ_production_limits.onAnyRateLimit()) { if (quantity_limit == WellEconProductionLimits::QuantityLimit::POTN) { rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.well_potentials.data(), deferred_logger); // Due to instability of the bhpFromThpLimit code the potentials are sometimes wrong // this can lead to premature shutting of wells due to rate limits of the potentials. // Since rates are supposed to be less or equal to the potentials, we double-check // that also the rate limit is violated before shutting the well. if (rate_limit_violated) rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.surface_rates.data(), deferred_logger); } else { rate_limit_violated = checkRateEconLimits(econ_production_limits, ws.surface_rates.data(), deferred_logger); } } if (rate_limit_violated) { if (econ_production_limits.endRun()) { const std::string warning_message = std::string("ending run after well closed due to economic limits") + std::string("is not supported yet \n") + std::string("the program will keep running after ") + name() + std::string(" is closed"); deferred_logger.warning("NOT_SUPPORTING_ENDRUN", warning_message); } if (econ_production_limits.validFollowonWell()) { deferred_logger.warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet"); } well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (this->well_ecl_.getAutomaticShutIn()) { const std::string msg = std::string("well ") + name() + std::string(" will be shut due to rate economic limit"); deferred_logger.info(msg); } else { const std::string msg = std::string("well ") + name() + std::string(" will be stopped due to rate economic limit"); deferred_logger.info(msg); } } // the well is closed, not need to check other limits return; } if ( !econ_production_limits.onAnyRatioLimit() ) { // there is no need to check the ratio limits return; } // checking for ratio related limits, mostly all kinds of ratio. RatioLimitCheckReport ratio_report; checkRatioEconLimits(econ_production_limits, ws, ratio_report, deferred_logger); if (ratio_report.ratio_limit_violated) { const auto workover = econ_production_limits.workover(); switch (workover) { case WellEconProductionLimits::EconWorkover::CON: { const int worst_offending_completion = ratio_report.worst_offending_completion; well_test_state.close_completion(name(), worst_offending_completion, simulation_time); if (write_message_to_opmlog) { if (worst_offending_completion < 0) { const std::string msg = std::string("Connection ") + std::to_string(- worst_offending_completion) + std::string(" for well ") + name() + std::string(" will be closed due to economic limit"); deferred_logger.info(msg); } else { const std::string msg = std::string("Completion ") + std::to_string(worst_offending_completion) + std::string(" for well ") + name() + std::string(" will be closed due to economic limit"); deferred_logger.info(msg); } } bool allCompletionsClosed = true; const auto& connections = well_ecl_.getConnections(); for (const auto& connection : connections) { if (connection.state() == Connection::State::OPEN && !well_test_state.completion_is_closed(name(), connection.complnum())) { allCompletionsClosed = false; } } if (allCompletionsClosed) { well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (this->well_ecl_.getAutomaticShutIn()) { const std::string msg = name() + std::string(" will be shut due to last completion closed"); deferred_logger.info(msg); } else { const std::string msg = name() + std::string(" will be stopped due to last completion closed"); deferred_logger.info(msg); } } } break; } case WellEconProductionLimits::EconWorkover::WELL: { well_test_state.close_well(name(), WellTestConfig::Reason::ECONOMIC, simulation_time); if (write_message_to_opmlog) { if (well_ecl_.getAutomaticShutIn()) { // tell the control that the well is closed const std::string msg = name() + std::string(" will be shut due to ratio economic limit"); deferred_logger.info(msg); } else { const std::string msg = name() + std::string(" will be stopped due to ratio economic limit"); deferred_logger.info(msg); } } break; } case WellEconProductionLimits::EconWorkover::NONE: break; default: { deferred_logger.warning("NOT_SUPPORTED_WORKOVER_TYPE", "not supporting workover type " + WellEconProductionLimits::EconWorkover2String(workover) ); } } } } template void WellInterfaceFluidSystem:: updateWellTestState(const SingleWellState& ws, const double& simulationTime, const bool& writeMessageToOPMLog, WellTestState& wellTestState, DeferredLogger& deferred_logger) const { // updating well test state based on physical (THP/BHP) limits. updateWellTestStatePhysical(simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); // updating well test state based on Economic limits for operable wells if (this->isOperableAndSolvable()) updateWellTestStateEconomic(ws, simulationTime, writeMessageToOPMLog, wellTestState, deferred_logger); // TODO: well can be shut/closed due to other reasons } template template void WellInterfaceFluidSystem:: checkMaxRatioLimitCompletions(const SingleWellState& ws, const double max_ratio_limit, const RatioFunc& ratioFunc, RatioLimitCheckReport& report) const { int worst_offending_completion = INVALIDCOMPLETION; // the maximum water cut value of the completions // it is used to identify the most offending completion double max_ratio_completion = 0; const int np = number_of_phases_; const auto& perf_data = ws.perf_data; const auto& perf_phase_rates = perf_data.phase_rates; // look for the worst_offending_completion for (const auto& completion : completions_) { std::vector completion_rates(np, 0.0); // looping through the connections associated with the completion const std::vector& conns = completion.second; for (const int c : conns) { for (int p = 0; p < np; ++p) { const double connection_rate = perf_phase_rates[c * np + p]; completion_rates[p] += connection_rate; } } // end of for (const int c : conns) parallel_well_info_.communication().sum(completion_rates.data(), completion_rates.size()); const double ratio_completion = ratioFunc(completion_rates, phaseUsage()); if (ratio_completion > max_ratio_completion) { worst_offending_completion = completion.first; max_ratio_completion = ratio_completion; } } // end of for (const auto& completion : completions_) const double violation_extent = max_ratio_completion / max_ratio_limit; if (violation_extent > report.violation_extent) { report.worst_offending_completion = worst_offending_completion; report.violation_extent = violation_extent; } } template template bool WellInterfaceFluidSystem:: checkMaxRatioLimitWell(const SingleWellState& ws, const double max_ratio_limit, const RatioFunc& ratioFunc) const { const int np = number_of_phases_; std::vector well_rates(np, 0.0); for (int p = 0; p < np; ++p) { well_rates[p] = ws.surface_rates[p]; } const double well_ratio = ratioFunc(well_rates, phaseUsage()); return (well_ratio > max_ratio_limit); } template int WellInterfaceFluidSystem:: flowPhaseToEbosPhaseIdx(const int phaseIdx) const { const auto& pu = this->phaseUsage(); if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && pu.phase_pos[Water] == phaseIdx) return FluidSystem::waterPhaseIdx; if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && pu.phase_pos[Oil] == phaseIdx) return FluidSystem::oilPhaseIdx; if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && pu.phase_pos[Gas] == phaseIdx) return FluidSystem::gasPhaseIdx; // for other phases return the index return phaseIdx; } template std::optional WellInterfaceFluidSystem:: getGroupInjectionTargetRate(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, const InjectorType& injectorType, double efficiencyFactor, DeferredLogger& deferred_logger) const { // Setting some defaults to silence warnings below. // Will be overwritten in the switch statement. Phase injectionPhase = Phase::WATER; switch (injectorType) { case InjectorType::WATER: { injectionPhase = Phase::WATER; break; } case InjectorType::OIL: { injectionPhase = Phase::OIL; break; } case InjectorType::GAS: { injectionPhase = Phase::GAS; break; } default: // Should not be here. assert(false); } auto currentGroupControl = group_state.injection_control(group.name(), injectionPhase); if (currentGroupControl == Group::InjectionCMode::FLD || currentGroupControl == Group::InjectionCMode::NONE) { if (!group.injectionGroupControlAvailable(injectionPhase)) { // We cannot go any further up the hierarchy. This could // be the FIELD group, or any group for which this has // been set in GCONINJE or GCONPROD. If we are here // anyway, it is likely that the deck set inconsistent // requirements, such as GRUP control mode on a well with // no appropriate controls defined on any of its // containing groups. We will therefore use the wells' bhp // limit equation as a fallback. return std::nullopt; } else { // Inject share of parents control const auto& parent = schedule.getGroup( group.parent(), currentStep()); efficiencyFactor *= group.getGroupEfficiencyFactor(); return getGroupInjectionTargetRate(parent, well_state, group_state, schedule, summaryState, injectorType, efficiencyFactor, deferred_logger); } } const auto pu = phaseUsage(); if (!group.isInjectionGroup()) { return std::nullopt; } // If we are here, we are at the topmost group to be visited in the recursion. // This is the group containing the control we will check against. // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(pu.num_phases, 1.0); rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. double sales_target = 0; if (schedule[currentStep()].gconsale().has(group.name())) { const auto& gconsale = schedule[currentStep()].gconsale().get(group.name(), summaryState); sales_target = gconsale.sales_target; } WellGroupHelpers::InjectionTargetCalculator tcalc(currentGroupControl, pu, resv_coeff, group.name(), sales_target, group_state, injectionPhase, group.has_gpmaint_control(injectionPhase, currentGroupControl), deferred_logger); WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, false, injectionPhase); auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet. }; auto localReduction = [&](const std::string& group_name) { const std::vector& groupTargetReductions = group_state.injection_reduction_rates(group_name); return tcalc.calcModeRateFromRates(groupTargetReductions); }; const double orig_target = tcalc.groupTarget(group.injectionControls(injectionPhase, summaryState), deferred_logger); const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep()); // Because 'name' is the last of the elements, and not an ancestor, we subtract one below. const size_t num_ancestors = chain.size() - 1; double target = orig_target; for (size_t ii = 0; ii < num_ancestors; ++ii) { if ((ii == 0) || guideRate()->has(chain[ii], injectionPhase)) { // Apply local reductions only at the control level // (top) and for levels where we have a specified // group guide rate. target -= localReduction(chain[ii]); } target *= localFraction(chain[ii+1]); } return std::max(0.0, target / efficiencyFactor); } template double WellInterfaceFluidSystem:: getGroupProductionTargetRate(const Group& group, const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, double efficiencyFactor) const { const Group::ProductionCMode& currentGroupControl = group_state.production_control(group.name()); if (currentGroupControl == Group::ProductionCMode::FLD || currentGroupControl == Group::ProductionCMode::NONE) { if (!group.productionGroupControlAvailable()) { return 1.0; } else { // Produce share of parents control const auto& parent = schedule.getGroup(group.parent(), currentStep()); efficiencyFactor *= group.getGroupEfficiencyFactor(); return getGroupProductionTargetRate(parent, well_state, group_state, schedule, summaryState, efficiencyFactor); } } const auto pu = phaseUsage(); if (!group.isProductionGroup()) { return 1.0; } // If we are here, we are at the topmost group to be visited in the recursion. // This is the group containing the control we will check against. // Make conversion factors for RESV <-> surface rates. std::vector resv_coeff(phaseUsage().num_phases, 1.0); rateConverter_.calcCoeff(0, pvtRegionIdx(), resv_coeff); // FIPNUM region 0 here, should use FIPNUM from WELSPECS. // gconsale may adjust the grat target. // the adjusted rates is send to the targetCalculator double gratTargetFromSales = 0.0; if (group_state.has_grat_sales_target(group.name())) gratTargetFromSales = group_state.grat_sales_target(group.name()); WellGroupHelpers::TargetCalculator tcalc(currentGroupControl, pu, resv_coeff, gratTargetFromSales, group.name(), group_state, group.has_gpmaint_control(currentGroupControl)); WellGroupHelpers::FractionCalculator fcalc(schedule, well_state, group_state, currentStep(), guideRate(), tcalc.guideTargetMode(), pu, true, Phase::OIL); auto localFraction = [&](const std::string& child) { return fcalc.localFraction(child, child); //Note child needs to be passed to always include since the global isGrup map is not updated yet. }; auto localReduction = [&](const std::string& group_name) { const std::vector& groupTargetReductions = group_state.production_reduction_rates(group_name); return tcalc.calcModeRateFromRates(groupTargetReductions); }; const double orig_target = tcalc.groupTarget(group.productionControls(summaryState)); const auto chain = WellGroupHelpers::groupChainTopBot(name(), group.name(), schedule, currentStep()); // Because 'name' is the last of the elements, and not an ancestor, we subtract one below. const size_t num_ancestors = chain.size() - 1; double target = orig_target; for (size_t ii = 0; ii < num_ancestors; ++ii) { if ((ii == 0) || guideRate()->has(chain[ii])) { // Apply local reductions only at the control level // (top) and for levels where we have a specified // group guide rate. target -= localReduction(chain[ii]); } target *= localFraction(chain[ii+1]); } // Avoid negative target rates coming from too large local reductions. const double target_rate = std::max(0.0, target / efficiencyFactor); const auto& ws = well_state.well(this->index_of_well_); const auto& rates = ws.surface_rates; const auto current_rate = -tcalc.calcModeRateFromRates(rates); // Switch sign since 'rates' are negative for producers. double scale = 1.0; if (target_rate == 0.0) { return 0.0; } if (current_rate > 1e-14) scale = target_rate/current_rate; return scale; } template class WellInterfaceFluidSystem>; } // namespace Opm