/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILPROPERTIESINTERFACE_HEADER_INCLUDED #define OPM_BLACKOILPROPERTIESINTERFACE_HEADER_INCLUDED namespace Opm { /// Abstract base class for blackoil fluid and reservoir properties. /// Supports variable number of spatial dimensions, called D. /// Supports variable number of phases, but assumes that /// the number of components is equal to the number of phases, called P. /// In general, when arguments call for n values of some vector or /// matrix property, such as saturation, they shall always be /// ordered cellwise: /// [s^1_0 s^2_0 s^3_0 s^1_1 s^2_2 ... ] /// in which s^i_j denotes saturation of phase i in cell j. class BlackoilPropertiesInterface { public: virtual ~BlackoilPropertiesInterface() {} // ---- Rock interface ---- /// \return D, the number of spatial dimensions. virtual int numDimensions() const = 0; /// \return N, the number of cells. virtual int numCells() const = 0; /// \return Array of N porosity values. virtual const double* porosity() const = 0; /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). virtual const double* permeability() const = 0; // ---- Fluid interface ---- /// \return P, the number of phases (also the number of components). virtual int numPhases() const = 0; /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] mu Array of nP viscosity values, array must be valid before calling. /// \param[out] dmudp If non-null: array of nP viscosity derivative values, /// array must be valid before calling. virtual void viscosity(const int n, const double* p, const double* z, const int* cells, double* mu, double* dmudp) const = 0; /// \param[in] n Number of data points. /// \param[in] p Array of n pressure values. /// \param[in] z Array of nP surface volume values. /// \param[in] cells Array of n cell indices to be associated with the p and z values. /// \param[out] A Array of nP^2 values, array must be valid before calling. /// The P^2 values for a cell give the matrix A = RB^{-1} which /// relates z to u by z = Au. The matrices are output in Fortran order. /// \param[out] dAdp If non-null: array of nP^2 matrix derivative values, /// array must be valid before calling. The matrices are output /// in Fortran order. virtual void matrix(const int n, const double* p, const double* z, const int* cells, double* A, double* dAdp) const = 0; /// Densities of stock components at reservoir conditions. /// \param[in] n Number of data points. /// \param[in] A Array of nP^2 values, where the P^2 values for a cell give the /// matrix A = RB^{-1} which relates z to u by z = Au. The matrices /// are assumed to be in Fortran order, and are typically the result /// of a call to the method matrix(). /// \param[out] rho Array of nP density values, array must be valid before calling. virtual void density(const int n, const double* A, double* rho) const = 0; /// Densities of stock components at surface conditions. /// \return Array of P density values. virtual const double* surfaceDensity() const = 0; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] kr Array of nP relperm values, array must be valid before calling. /// \param[out] dkrds If non-null: array of nP^2 relperm derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dkr_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void relperm(const int n, const double* s, const int* cells, double* kr, double* dkrds) const = 0; /// \param[in] n Number of data points. /// \param[in] s Array of nP saturation values. /// \param[in] cells Array of n cell indices to be associated with the s values. /// \param[out] pc Array of nP capillary pressure values, array must be valid before calling. /// \param[out] dpcds If non-null: array of nP^2 derivative values, /// array must be valid before calling. /// The P^2 derivative matrix is /// m_{ij} = \frac{dpc_i}{ds^j}, /// and is output in Fortran order (m_00 m_10 m_20 m_01 ...) virtual void capPress(const int n, const double* s, const int* cells, double* pc, double* dpcds) const = 0; }; } // namespace Opm #endif // OPM_BLACKOILPROPERTIESINTERFACE_HEADER_INCLUDED