/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE WellModelTest #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if HAVE_DUNE_FEM #include #else #include #endif using StandardWell = Opm::StandardWell; struct SetupTest { using Grid = UnstructuredGrid; SetupTest () { Opm::Parser parser; auto deck = parser.parseFile("TESTWELLMODEL.DATA"); ecl_state.reset(new Opm::EclipseState(deck) ); { const Opm::TableManager table ( deck ); const Opm::Runspec runspec (deck); python = std::make_shared(); schedule.reset( new Opm::Schedule(deck, *ecl_state, python)); summaryState.reset( new Opm::SummaryState(std::chrono::system_clock::from_time_t(schedule->getStartTime()))); } current_timestep = 0; }; std::unique_ptr ecl_state; std::shared_ptr python; std::unique_ptr schedule; std::unique_ptr summaryState; std::vector> well_perf_data; int current_timestep; }; struct GlobalFixture { GlobalFixture() { int argcDummy = 1; const char *tmp[] = {"test_wellmodel"}; char **argvDummy = const_cast(tmp); // MPI setup. #if HAVE_DUNE_FEM Dune::Fem::MPIManager::initialize(argcDummy, argvDummy); #else Dune::MPIHelper::instance(argcDummy, argvDummy); #endif Opm::FlowMainEbos::setupParameters_(argcDummy, argvDummy); } }; BOOST_GLOBAL_FIXTURE(GlobalFixture); BOOST_AUTO_TEST_CASE(TestStandardWellInput) { const SetupTest setup_test; const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep); BOOST_CHECK_EQUAL( wells_ecl.size(), 2); const Opm::Well& well = wells_ecl[1]; const Opm::BlackoilModelParametersEbos param; // For the conversion between the surface volume rate and resrevoir voidage rate typedef Opm::BlackOilFluidSystem FluidSystem; using RateConverterType = Opm::RateConverter:: SurfaceToReservoirVoidage >; // Compute reservoir volumes for RESV controls. Opm::PhaseUsage phaseUsage; std::unique_ptr rateConverter; // Compute reservoir volumes for RESV controls. rateConverter.reset(new RateConverterType (phaseUsage, std::vector(10, 0))); Opm::PerforationData dummy; std::vector pdata(well.getConnections().size(), dummy); Opm::ParallelWellInfo pinfo{well.name()}; BOOST_CHECK_THROW( StandardWell( well, pinfo, -1, param, *rateConverter, 0, 3, 3, 0, 0, pdata), std::invalid_argument); } BOOST_AUTO_TEST_CASE(TestBehavoir) { const SetupTest setup_test; const auto& wells_ecl = setup_test.schedule->getWells(setup_test.current_timestep); const int current_timestep = setup_test.current_timestep; std::vector > wells; { const int nw = wells_ecl.size(); const Opm::BlackoilModelParametersEbos param; for (int w = 0; w < nw; ++w) { // For the conversion between the surface volume rate and resrevoir voidage rate typedef Opm::BlackOilFluidSystem FluidSystem; using RateConverterType = Opm::RateConverter:: SurfaceToReservoirVoidage >; // Compute reservoir volumes for RESV controls. // TODO: not sure why for this class the initlizer list does not work // otherwise we should make a meaningful const PhaseUsage here. Opm::PhaseUsage phaseUsage; std::unique_ptr rateConverter; // Compute reservoir volumes for RESV controls. rateConverter.reset(new RateConverterType (phaseUsage, std::vector(10, 0))); Opm::PerforationData dummy; std::vector pdata(wells_ecl[w].getConnections().size(), dummy); Opm::ParallelWellInfo pinfo{wells_ecl[w].name()}; wells.emplace_back(new StandardWell(wells_ecl[w], pinfo, current_timestep, param, *rateConverter, 0, 3, 3, w, 0, pdata) ); } } // first well, it is a production well from the deck { const auto& well = wells[0]; BOOST_CHECK_EQUAL(well->name(), "PROD1"); BOOST_CHECK(well->isProducer()); BOOST_CHECK(well->numEq == 3); BOOST_CHECK(well->numStaticWellEq== 4); } // second well, it is the injection well from the deck { const auto& well = wells[1]; BOOST_CHECK_EQUAL(well->name(), "INJE1"); BOOST_CHECK(well->isInjector()); BOOST_CHECK(well->numEq == 3); BOOST_CHECK(well->numStaticWellEq== 4); } }