/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 - 2017 Statoil ASA. Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services Copyright 2016 - 2018 IRIS AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED #define OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { class DeferredLogger; class EclipseState; class GasLiftSingleWellGeneric; class GasLiftWellState; class GasLiftGroupInfo; class Group; class GuideRateConfig; class ParallelWellInfo; class RestartValue; class Schedule; class SummaryConfig; class VFPProperties; class WellInterfaceGeneric; class WellState; } // namespace Opm namespace Opm { namespace data { struct GroupData; struct GroupGuideRates; class GroupAndNetworkValues; struct NodeData; }} // namespace Opm::data namespace Opm { /// Class for handling the blackoil well model. class BlackoilWellModelGeneric { public: // --------- Types --------- using GLiftOptWells = std::map>; using GLiftProdWells = std::map; using GLiftWellStateMap = std::map>; BlackoilWellModelGeneric(Schedule& schedule, const SummaryState& summaryState, const EclipseState& eclState, const PhaseUsage& phase_usage, const Parallel::Communication& comm); virtual ~BlackoilWellModelGeneric() = default; int numLocalWells() const; int numPhases() const; /// return true if wells are available in the reservoir bool wellsActive() const; bool hasWell(const std::string& wname) const; // whether there exists any multisegment well open on this process bool anyMSWellOpenLocal() const; const Well& getWellEcl(const std::string& well_name) const; std::vector getLocalWells(const int timeStepIdx) const; const Schedule& schedule() const { return schedule_; } const PhaseUsage& phaseUsage() const { return phase_usage_; } const GroupState& groupState() const { return this->active_wgstate_.group_state; } std::vector genericWells() const { return {well_container_generic_.begin(), well_container_generic_.end()}; } /* Immutable version of the currently active wellstate. */ const WellState& wellState() const { return this->active_wgstate_.well_state; } /* Mutable version of the currently active wellstate. */ WellState& wellState() { return this->active_wgstate_.well_state; } GroupState& groupState() { return this->active_wgstate_.group_state; } WellTestState& wellTestState() { return this->active_wgstate_.well_test_state; } const WellTestState& wellTestState() const { return this->active_wgstate_.well_test_state; } double wellPI(const int well_index) const; double wellPI(const std::string& well_name) const; void updateEclWells(const int timeStepIdx, const std::unordered_set& wells, const SummaryState& st); void initFromRestartFile(const RestartValue& restartValues, WellTestState wtestState, const size_t numCells, bool handle_ms_well); void prepareDeserialize(int report_step, const size_t numCells, bool handle_ms_well); /* Will assign the internal member last_valid_well_state_ to the current value of the this->active_well_state_. The state stored with storeWellState() can then subsequently be recovered with the resetWellState() method. */ void commitWGState() { this->last_valid_wgstate_ = this->active_wgstate_; } data::GroupAndNetworkValues groupAndNetworkData(const int reportStepIdx) const; /// Return true if any well has a THP constraint. bool hasTHPConstraints() const; /// Shut down any single well /// Returns true if the well was actually found and shut. bool forceShutWellByName(const std::string& wellname, const double simulation_time); const std::vector& perfData(const int well_idx) const { return well_perf_data_[well_idx]; } const Parallel::Communication& comm() const { return comm_; } const SummaryState& summaryState() const { return summaryState_; } const GuideRate& guideRate() const { return guideRate_; } bool reportStepStarts() const { return report_step_starts_; } bool shouldBalanceNetwork(const int reportStepIndex, const int iterationIdx) const; bool moreNetworkIteration(const int reportStepIdx, const std::size_t iteration, const double network_imbalance) const; template void serializeOp(Serializer& serializer) { serializer(initial_step_); serializer(report_step_starts_); serializer(last_run_wellpi_); serializer(local_shut_wells_); serializer(closed_this_step_); serializer(guideRate_); serializer(node_pressures_); serializer(active_wgstate_); serializer(last_valid_wgstate_); serializer(nupcol_wgstate_); serializer(last_glift_opt_time_); serializer(switched_prod_groups_); serializer(switched_inj_groups_); } bool operator==(const BlackoilWellModelGeneric& rhs) const { return this->initial_step_ == rhs.initial_step_ && this->report_step_starts_ == rhs.report_step_starts_ && this->last_run_wellpi_ == rhs.last_run_wellpi_ && this->local_shut_wells_ == rhs.local_shut_wells_ && this->closed_this_step_ == rhs.closed_this_step_ && this->node_pressures_ == rhs.node_pressures_ && this->active_wgstate_ == rhs.active_wgstate_ && this->last_valid_wgstate_ == rhs.last_valid_wgstate_ && this->nupcol_wgstate_ == rhs.nupcol_wgstate_ && this->last_glift_opt_time_ == rhs.last_glift_opt_time_ && this->switched_prod_groups_ == rhs.switched_prod_groups_ && this->switched_inj_groups_ == rhs.switched_inj_groups_; } protected: /* The dynamic state of the well model is maintained with an instance of the WellState class. Currently we have three different wellstate instances: 1. The currently active wellstate is in the active_well_state_ member. That is the state which is mutated by the simulator. 2. In the case timestep fails to converge and we must go back and try again with a smaller timestep we need to recover the last valid wellstate. This is maintained with the last_valid_well_state_ member and the functions commitWellState() and resetWellState(). 3. For the NUPCOL functionality we should either use the currently active wellstate or a wellstate frozen at max nupcol iterations. This is handled with the member nupcol_well_state_ and the initNupcolWellState() function. */ /* Will return the last good wellstate. This is typcially used when initializing a new report step where the Schedule object might have introduced new wells. The wellstate returned by prevWellState() must have been stored with the commitWellState() function first. */ const WellState& prevWellState() const { return this->last_valid_wgstate_.well_state; } const WGState& prevWGState() const { return this->last_valid_wgstate_; } /* Will return the currently active nupcolWellState; must initialize the internal nupcol wellstate with initNupcolWellState() first. */ const WellState& nupcolWellState() const { return this->nupcol_wgstate_.well_state; } /* Will store a copy of the input argument well_state in the last_valid_well_state_ member, that state can then be recovered with a subsequent call to resetWellState(). */ void commitWGState(WGState wgstate) { this->last_valid_wgstate_ = std::move(wgstate); } /* Will update the internal variable active_well_state_ to whatever was stored in the last_valid_well_state_ member. This function works in pair with commitWellState() which should be called first. */ void resetWGState() { this->active_wgstate_ = this->last_valid_wgstate_; } /* Will store the current active wellstate in the nupcol_well_state_ member. This can then be subsequently retrieved with accessor nupcolWellState(). */ void updateNupcolWGState() { this->nupcol_wgstate_ = this->active_wgstate_; } /// \brief Create the parallel well information /// \param localWells The local wells from ECL schedule std::vector> createLocalParallelWellInfo(const std::vector& wells); void initializeWellProdIndCalculators(); void initializeWellPerfData(); bool wasDynamicallyShutThisTimeStep(const int well_index) const; std::pair updateNetworkPressures(const int reportStepIdx); void updateWsolvent(const Group& group, const int reportStepIdx, const WellState& wellState); void setWsolvent(const Group& group, const int reportStepIdx, double wsolvent); virtual void calcRates(const int fipnum, const int pvtreg, const std::vector& production_rates, std::vector& resv_coeff) = 0; virtual void calcInjRates(const int fipnum, const int pvtreg, std::vector& resv_coeff) = 0; void assignShutConnections(data::Wells& wsrpt, const int reportStepIndex) const; void assignGroupControl(const Group& group, data::GroupData& gdata) const; void assignGroupValues(const int reportStepIdx, std::map& gvalues) const; void assignNodeValues(std::map& nodevalues) const; void calculateEfficiencyFactors(const int reportStepIdx); void checkGconsaleLimits(const Group& group, WellState& well_state, const int reportStepIdx, DeferredLogger& deferred_logger); bool checkGroupHigherConstraints(const Group& group, DeferredLogger& deferred_logger, const int reportStepIdx); void updateAndCommunicateGroupData(const int reportStepIdx, const int iterationIdx); void inferLocalShutWells(); void setRepRadiusPerfLength(); void gliftDebug(const std::string& msg, DeferredLogger& deferred_logger) const; void gliftDebugShowALQ(DeferredLogger& deferred_logger); void gasLiftOptimizationStage2(DeferredLogger& deferred_logger, GLiftProdWells& prod_wells, GLiftOptWells& glift_wells, GasLiftGroupInfo& group_info, GLiftWellStateMap& map, const int episodeIndex); virtual void computePotentials(const std::size_t widx, const WellState& well_state_copy, std::string& exc_msg, ExceptionType::ExcEnum& exc_type, DeferredLogger& deferred_logger) = 0; // Calculating well potentials for each well void updateWellPotentials(const int reportStepIdx, const bool onlyAfterEvent, const SummaryConfig& summaryConfig, DeferredLogger& deferred_logger); // create the well container virtual void createWellContainer(const int time_step) = 0; virtual void initWellContainer(const int reportStepIdx) = 0; virtual void calculateProductivityIndexValuesShutWells(const int reportStepIdx, DeferredLogger& deferred_logger) = 0; virtual void calculateProductivityIndexValues(DeferredLogger& deferred_logger) = 0; void runWellPIScaling(const int timeStepIdx, DeferredLogger& local_deferredLogger); /// \brief get compressed index for interior cells (-1, otherwise virtual int compressedIndexForInterior(int cartesian_cell_idx) const = 0; std::vector getCellsForConnections(const Well& well) const; std::vector getWellsForTesting(const int timeStepIdx, const double simulationTime); Schedule& schedule_; const SummaryState& summaryState_; const EclipseState& eclState_; const Parallel::Communication& comm_; PhaseUsage phase_usage_; bool terminal_output_{false}; bool wells_active_{false}; bool initial_step_{}; bool report_step_starts_{}; std::optional last_run_wellpi_{}; std::vector wells_ecl_; std::vector> well_perf_data_; std::function not_on_process_{}; // a vector of all the wells. std::vector well_container_generic_{}; std::vector local_shut_wells_{}; std::vector parallel_well_info_; std::vector> local_parallel_well_info_; std::vector prod_index_calc_; std::vector pvt_region_idx_; mutable std::unordered_set closed_this_step_; GuideRate guideRate_; std::unique_ptr vfp_properties_{}; std::map node_pressures_; // Storing network pressures for output. /* The various wellState members should be accessed and modified through the accessor functions wellState(), prevWellState(), commitWellState(), resetWellState(), nupcolWellState() and updateNupcolWellState(). */ WGState active_wgstate_; WGState last_valid_wgstate_; WGState nupcol_wgstate_; bool glift_debug = false; double last_glift_opt_time_ = -1.0; std::map switched_prod_groups_; std::map, std::string> switched_inj_groups_; private: WellInterfaceGeneric* getGenWell(const std::string& well_name); }; } // namespace Opm #endif