/* Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface Copyright 2017 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_AQUIFERCT_HEADER_INCLUDED #define OPM_AQUIFERCT_HEADER_INCLUDED #include #include #include #include #include #include namespace Opm { template class AquiferCarterTracy : public AquiferInterface { public: typedef AquiferInterface Base; using typename Base::BlackoilIndices; using typename Base::ElementContext; using typename Base::Eval; using typename Base::FluidState; using typename Base::FluidSystem; using typename Base::IntensiveQuantities; using typename Base::RateVector; using typename Base::Scalar; using typename Base::Simulator; using typename Base::ElementMapper; AquiferCarterTracy(const std::vector& connections, const Simulator& ebosSimulator, const AquiferCT::AQUCT_data& aquct_data) : Base(aquct_data.aquiferID, connections, ebosSimulator) , aquct_data_(aquct_data) {} void endTimeStep() override { for (const auto& q : this->Qai_) { this->W_flux_ += q * this->ebos_simulator_.timeStepSize(); } this->fluxValue_ = this->W_flux_.value(); const auto& comm = this->ebos_simulator_.vanguard().grid().comm(); comm.sum(&this->fluxValue_, 1); } data::AquiferData aquiferData() const { data::AquiferData data; data.aquiferID = this->aquiferID(); // TODO: not sure how to get this pressure value yet data.pressure = this->pa0_; data.fluxRate = 0.; for (const auto& q : this->Qai_) { data.fluxRate += q.value(); } data.volume = this->W_flux_.value(); data.initPressure = this->pa0_; auto* aquCT = data.typeData.template create(); aquCT->dimensionless_time = this->dimensionless_time_; aquCT->dimensionless_pressure = this->dimensionless_pressure_; aquCT->influxConstant = this->aquct_data_.influxConstant(); if (!this->co2store_()) { aquCT->timeConstant = this->aquct_data_.timeConstant(); aquCT->waterDensity = this->aquct_data_.waterDensity(); aquCT->waterViscosity = this->aquct_data_.waterViscosity(); } else { aquCT->waterDensity = this->rhow_; aquCT->timeConstant = this->Tc_; const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr * this->aquct_data_.inner_radius * this->aquct_data_.inner_radius; aquCT->waterViscosity = this->Tc_ * this->aquct_data_.permeability / x; } return data; } protected: // Variables constants AquiferCT::AQUCT_data aquct_data_; Scalar beta_; // Influx constant // TODO: it is possible it should be a AD variable Scalar fluxValue_{0}; // value of flux Scalar dimensionless_time_{0}; Scalar dimensionless_pressure_{0}; void assignRestartData(const data::AquiferData& xaq) override { this->fluxValue_ = xaq.volume; this->rhow_ = this->aquct_data_.waterDensity(); } std::pair getInfluenceTableValues(const Scalar td_plus_dt) { // We use the opm-common numeric linear interpolator this->dimensionless_pressure_ = linearInterpolation(this->aquct_data_.dimensionless_time, this->aquct_data_.dimensionless_pressure, this->dimensionless_time_); const auto PItd = linearInterpolation(this->aquct_data_.dimensionless_time, this->aquct_data_.dimensionless_pressure, td_plus_dt); const auto PItdprime = linearInterpolationDerivative(this->aquct_data_.dimensionless_time, this->aquct_data_.dimensionless_pressure, td_plus_dt); return std::make_pair(PItd, PItdprime); } Scalar dpai(const int idx) const { const auto gdz = this->gravity_() * (this->cell_depth_.at(idx) - this->aquiferDepth()); const auto dp = this->pa0_ + this->rhow_*gdz - this->pressure_previous_.at(idx); return dp; } // This function implements Eqs 5.8 and 5.9 of the EclipseTechnicalDescription std::pair calculateEqnConstants(const int idx, const Simulator& simulator) { const Scalar td_plus_dt = (simulator.timeStepSize() + simulator.time()) / this->Tc_; this->dimensionless_time_ = simulator.time() / this->Tc_; const auto [PItd, PItdprime] = this->getInfluenceTableValues(td_plus_dt); const auto denom = this->Tc_ * (PItd - this->dimensionless_time_*PItdprime); const auto a = (this->beta_*dpai(idx) - this->fluxValue_*PItdprime) / denom; const auto b = this->beta_ / denom; return std::make_pair(a, b); } std::size_t pvtRegionIdx() const { return this->aquct_data_.pvttableID - 1; } // This function implements Eq 5.7 of the EclipseTechnicalDescription inline void calculateInflowRate(int idx, const Simulator& simulator) override { const auto [a, b] = this->calculateEqnConstants(idx, simulator); this->Qai_.at(idx) = this->alphai_.at(idx) * (a - b*(this->pressure_current_.at(idx) - this->pressure_previous_.at(idx))); } inline void calculateAquiferConstants() override { if(this->co2store_()) { const auto press = this->aquct_data_.initial_pressure.value(); Scalar temp = FluidSystem::reservoirTemperature(); if (this->aquct_data_.initial_temperature.has_value()) temp = this->aquct_data_.initial_temperature.value(); Scalar rs = 0.0; // no dissolved CO2 Scalar waterViscosity = FluidSystem::oilPvt().viscosity(pvtRegionIdx(), temp, press, rs); const auto x = this->aquct_data_.porosity * this->aquct_data_.total_compr * this->aquct_data_.inner_radius * this->aquct_data_.inner_radius; this->Tc_ = waterViscosity * x / this->aquct_data_.permeability; } else { this->Tc_ = this->aquct_data_.timeConstant(); } this->beta_ = this->aquct_data_.influxConstant(); } inline void calculateAquiferCondition() override { if (this->solution_set_from_restart_) { return; } if (! this->aquct_data_.initial_pressure.has_value()) { this->aquct_data_.initial_pressure = this->calculateReservoirEquilibrium(); const auto& tables = this->ebos_simulator_.vanguard() .eclState().getTableManager(); this->aquct_data_.finishInitialisation(tables); } this->pa0_ = this->aquct_data_.initial_pressure.value(); if(this->co2store_()) { const auto press = this->aquct_data_.initial_pressure.value(); Scalar temp = FluidSystem::reservoirTemperature(); if (this->aquct_data_.initial_temperature.has_value()) temp = this->aquct_data_.initial_temperature.value(); Scalar rs = 0.0; // no dissolved CO2 Scalar waterDensity = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx(), temp, press, rs) * FluidSystem::oilPvt().oilReferenceDensity(pvtRegionIdx()); this->rhow_ = waterDensity; } else { this->rhow_ = this->aquct_data_.waterDensity(); } } virtual Scalar aquiferDepth() const override { return this->aquct_data_.datum_depth; } }; // class AquiferCarterTracy } // namespace Opm #endif