/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see <http://www.gnu.org/licenses/>. */ #ifndef OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED #define OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED #include <opm/polymer/PolymerProperties.hpp> #include <opm/core/transport/reorder/ReorderSolverInterface.hpp> #include <opm/core/utility/linearInterpolation.hpp> #include <vector> #include <list> struct UnstructuredGrid; namespace { class ResSOnCurve; class ResCOnCurve; } namespace Opm { class BlackoilPropertiesInterface; /// Implements a reordering transport solver for incompressible two-phase flow /// with polymer in the water phase. /// \TODO Include permeability reduction effect. class TransportSolverTwophaseCompressiblePolymer : public ReorderSolverInterface { public: enum SingleCellMethod { Bracketing, Newton, NewtonC, Gradient}; enum GradientMethod { Analytic, FinDif }; // Analytic is chosen (hard-coded) /// Construct solver. /// \param[in] grid A 2d or 3d grid. /// \param[in] props Rock and fluid properties. /// \param[in] polyprops Polymer properties. /// \param[in] rock_comp Rock compressibility properties /// \param[in] method Bracketing: solve for c in outer loop, s in inner loop, /// each solve being bracketed for robustness. /// Newton: solve simultaneously for c and s with Newton's method. /// (using gradient variant and bracketing as fallbacks). /// \param[in] tol Tolerance used in the solver. /// \param[in] maxit Maximum number of non-linear iterations used. TransportSolverTwophaseCompressiblePolymer(const UnstructuredGrid& grid, const BlackoilPropertiesInterface& props, const PolymerProperties& polyprops, const SingleCellMethod method, const double tol, const int maxit); /// Set the preferred method, Bracketing or Newton. void setPreferredMethod(SingleCellMethod method); /// Solve for saturation, concentration and cmax at next timestep. /// Using implicit Euler scheme, reordered. /// \param[in] darcyflux Array of signed face fluxes. /// \param[in] initial_pressure Array with pressure at start of timestep. /// \param[in] pressure Array with pressure. /// \param[in] temperature Array with temperature. /// \param[in] porevolume0 Array with pore volume at start of timestep. /// \param[in] porevolume Array with pore volume. /// \param[in] source Transport source term, to be interpreted by sign: /// (+) Inflow, value is first phase flow (water) /// per second, in *surface* volumes (unlike the /// incompressible version). /// (-) Outflow, value is total flow of all phases /// per second, in reservoir volumes. /// \param[in] polymer_inflow_c Array of inflow polymer concentrations per cell. /// \param[in] dt Time step. /// \param[in, out] saturation Phase saturations. /// \param[in, out] surfacevol Surface volumes. /// \param[in, out] concentration Polymer concentration. /// \param[in, out] cmax Highest concentration that has occured in a given cell. void solve(const double* darcyflux, const std::vector<double>& initial_pressure, const std::vector<double>& pressure, const std::vector<double>& temperature, const double* porevolume0, const double* porevolume, const double* source, const double* polymer_inflow_c, const double dt, std::vector<double>& saturation, std::vector<double>& surfacevol, std::vector<double>& concentration, std::vector<double>& cmax); /// Initialise quantities needed by gravity solver. /// \param[in] grav Gravity vector void initGravity(const double* grav); /// Solve for gravity segregation. /// This uses a column-wise nonlinear Gauss-Seidel approach. /// It assumes that the input columns contain cells in a single /// vertical stack, that do not interact with other columns (for /// gravity segregation. /// \param[in] columns Vector of cell-columns. /// \param[in] dt Time step. /// \param[in, out] saturation Phase saturations. /// \param[in, out] surfacevol Surface volumes. /// \param[in, out] concentration Polymer concentration. /// \param[in, out] cmax Highest concentration that has occured in a given cell. void solveGravity(const std::vector<std::vector<int> >& columns, const double dt, std::vector<double>& saturation, std::vector<double>& surfacevol, std::vector<double>& concentration, std::vector<double>& cmax); private: const UnstructuredGrid& grid_; const BlackoilPropertiesInterface& props_; const PolymerProperties& polyprops_; const double* darcyflux_; // one flux per grid face const double* porevolume0_; // one volume per cell const double* porevolume_; // one volume per cell const double* source_; // one source per cell const double* polymer_inflow_c_; double dt_; double tol_; double maxit_; SingleCellMethod method_; double adhoc_safety_; std::vector<double> saturation_; // one per cell, only water saturation! std::vector<int> allcells_; double* concentration_; double* cmax_; std::vector<double> fractionalflow_; // one per cell std::vector<double> mc_; // one per cell std::vector<double> visc_; // viscosity (without polymer, for given pressure) std::vector<double> A_; std::vector<double> A0_; std::vector<double> smin_; std::vector<double> smax_; // For gravity segregation. const double* gravity_; std::vector<double> trans_; std::vector<double> density_; std::vector<double> gravflux_; std::vector<double> mob_; std::vector<double> cmax0_; // For gravity segregation, column variables std::vector<double> s0_; std::vector<double> c0_; // Storing the upwind and downwind graphs for experiments. std::vector<int> ia_upw_; std::vector<int> ja_upw_; std::vector<int> ia_downw_; std::vector<int> ja_downw_; struct ResidualC; struct ResidualS; class ResidualCGrav; class ResidualSGrav; class ResidualEquation; class ResSOnCurve; class ResCOnCurve; friend class TransportSolverTwophaseCompressiblePolymer::ResidualEquation; friend class TransportSolverTwophaseCompressiblePolymer::ResSOnCurve; friend class TransportSolverTwophaseCompressiblePolymer::ResCOnCurve; virtual void solveSingleCell(const int cell); virtual void solveMultiCell(const int num_cells, const int* cells); void solveSingleCellBracketing(int cell); void solveSingleCellNewton(int cell, bool use_sc, bool use_explicit_step = false); void solveSingleCellGradient(int cell); void solveSingleCellGravity(const std::vector<int>& cells, const int pos, const double* gravflux); int solveGravityColumn(const std::vector<int>& cells); void initGravityDynamic(); void fracFlow(double s, double c, double cmax, int cell, double& ff) const; void fracFlowWithDer(double s, double c, double cmax, int cell, double& ff, double* dff_dsdc) const; void fracFlowBoth(double s, double c, double cmax, int cell, double& ff, double* dff_dsdc, bool if_with_der) const; void computeMc(double c, double& mc) const; void computeMcWithDer(double c, double& mc, double& dmc_dc) const; void mobility(double s, double c, int cell, double* mob) const; void scToc(const double* x, double* x_c) const; #ifdef PROFILING class Newton_Iter { public: bool res_s; int cell; double s; double c; Newton_Iter(bool res_s_val, int cell_val, double s_val, double c_val) { res_s = res_s_val; cell = cell_val; s = s_val; c = c_val; } }; std::list<Newton_Iter> res_counts; #endif }; } // namespace Opm #endif // OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED