/* Copyright (C) 2020 Equinor ASA Copyright (C) 2020 SINTEF Digital This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_AQUIFERNUMERICAL_HEADER_INCLUDED #define OPM_AQUIFERNUMERICAL_HEADER_INCLUDED #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template class AquiferNumerical : public AquiferInterface { public: using BlackoilIndices = GetPropType; using ElementContext = GetPropType; using ExtensiveQuantities = GetPropType; using FluidSystem = GetPropType; using GridView = GetPropType; using IntensiveQuantities = GetPropType; using MaterialLaw = GetPropType; using Simulator = GetPropType; enum { dimWorld = GridView::dimensionworld }; enum { numPhases = FluidSystem::numPhases }; static constexpr int numEq = BlackoilIndices::numEq; using Eval = DenseAd::Evaluation; using Toolbox = MathToolbox; using typename AquiferInterface::RateVector; // Constructor AquiferNumerical(const SingleNumericalAquifer& aquifer, const Simulator& ebos_simulator) : AquiferInterface(aquifer.id(), ebos_simulator) , flux_rate_ (0.0) , cumulative_flux_(0.0) , init_pressure_ (aquifer.numCells(), 0.0) { this->cell_to_aquifer_cell_idx_.resize(this->ebos_simulator_.gridView().size(/*codim=*/0), -1); auto aquifer_on_process = false; for (std::size_t idx = 0; idx < aquifer.numCells(); ++idx) { const auto* cell = aquifer.getCellPrt(idx); // Due to parallelisation, the cell might not exist in the current process const int compressed_idx = ebos_simulator.vanguard().compressedIndexForInterior(cell->global_index); if (compressed_idx >= 0) { this->cell_to_aquifer_cell_idx_[compressed_idx] = idx; aquifer_on_process = true; } } if (aquifer_on_process) { this->checkConnectsToReservoir(); } } static AquiferNumerical serializationTestObject(const Simulator& ebos_simulator) { AquiferNumerical result({}, ebos_simulator); result.flux_rate_ = 1.0; result.cumulative_flux_ = 2.0; result.init_pressure_ = {3.0, 4.0}; result.pressure_ = 5.0; return result; } void initFromRestart(const data::Aquifers& aquiferSoln) override { auto xaqPos = aquiferSoln.find(this->aquiferID()); if (xaqPos == aquiferSoln.end()) return; if (this->connects_to_reservoir_) { this->cumulative_flux_ = xaqPos->second.volume; } if (const auto* aqData = xaqPos->second.typeData.template get(); aqData != nullptr) { this->init_pressure_ = aqData->initPressure; } this->solution_set_from_restart_ = true; } void beginTimeStep() override {} void addToSource(RateVector&, const unsigned, const unsigned) override {} void endTimeStep() override { this->pressure_ = this->calculateAquiferPressure(); this->flux_rate_ = this->calculateAquiferFluxRate(); this->cumulative_flux_ += this->flux_rate_ * this->ebos_simulator_.timeStepSize(); } data::AquiferData aquiferData() const override { data::AquiferData data; data.aquiferID = this->aquiferID(); data.pressure = this->pressure_; data.fluxRate = this->flux_rate_; data.volume = this->cumulative_flux_; auto* aquNum = data.typeData.template create(); aquNum->initPressure = this->init_pressure_; return data; } void initialSolutionApplied() override { if (this->solution_set_from_restart_) { return; } this->pressure_ = this->calculateAquiferPressure(this->init_pressure_); this->flux_rate_ = 0.; this->cumulative_flux_ = 0.; } template void serializeOp(Serializer& serializer) { serializer(flux_rate_); serializer(cumulative_flux_); serializer(init_pressure_); serializer(pressure_); } bool operator==(const AquiferNumerical& rhs) const { return this->flux_rate_ == rhs.flux_rate_ && this->cumulative_flux_ == rhs.cumulative_flux_ && this->init_pressure_ == rhs.init_pressure_ && this->pressure_ == rhs.pressure_; } double cumulativeFlux() const { return this->cumulative_flux_; } private: void checkConnectsToReservoir() { ElementContext elem_ctx(this->ebos_simulator_); auto elemIt = std::find_if(this->ebos_simulator_.gridView().template begin(), this->ebos_simulator_.gridView().template end(), [&elem_ctx, this](const auto& elem) -> bool { elem_ctx.updateStencil(elem); const auto cell_index = elem_ctx .globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); return this->cell_to_aquifer_cell_idx_[cell_index] == 0; }); assert ((elemIt != this->ebos_simulator_.gridView().template end()) && "Internal error locating numerical aquifer's connecting cell"); this->connects_to_reservoir_ = elemIt->partitionType() == Dune::InteriorEntity; } double calculateAquiferPressure() const { auto capture = std::vector(this->init_pressure_.size(), 0.0); return this->calculateAquiferPressure(capture); } double calculateAquiferPressure(std::vector& cell_pressure) const { double sum_pressure_watervolume = 0.; double sum_watervolume = 0.; ElementContext elem_ctx(this->ebos_simulator_); const auto& gridView = this->ebos_simulator_.gridView(); OPM_BEGIN_PARALLEL_TRY_CATCH(); for (const auto& elem : elements(gridView, Dune::Partitions::interior)) { elem_ctx.updatePrimaryStencil(elem); const size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const int idx = this->cell_to_aquifer_cell_idx_[cell_index]; if (idx < 0) { continue; } elem_ctx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0); const auto& iq0 = elem_ctx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0); const auto& fs = iq0.fluidState(); // TODO: the porosity of the cells are still wrong for numerical aquifer cells // Because the dofVolume still based on the grid information. // The pore volume is correct. Extra efforts will be done to get sensible porosity value here later. const double water_saturation = fs.saturation(this->phaseIdx_()).value(); const double porosity = iq0.porosity().value(); const double volume = elem_ctx.dofTotalVolume(0, 0); // TODO: not sure we should use water pressure here const double water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value(); const double water_volume = volume * porosity * water_saturation; sum_pressure_watervolume += water_volume * water_pressure_reservoir; sum_watervolume += water_volume; cell_pressure[idx] = water_pressure_reservoir; } OPM_END_PARALLEL_TRY_CATCH("AquiferNumerical::calculateAquiferPressure() failed: ", this->ebos_simulator_.vanguard().grid().comm()); const auto& comm = this->ebos_simulator_.vanguard().grid().comm(); comm.sum(&sum_pressure_watervolume, 1); comm.sum(&sum_watervolume, 1); // Ensure all processes have same notion of the aquifer cells' pressure values. comm.sum(cell_pressure.data(), cell_pressure.size()); return sum_pressure_watervolume / sum_watervolume; } template double getWaterFlux(const ElemCtx& elem_ctx, unsigned face_idx) const { const auto& exQuants = elem_ctx.extensiveQuantities(face_idx, /*timeIdx*/ 0); const double water_flux = Toolbox::value(exQuants.volumeFlux(this->phaseIdx_())); return water_flux; } double calculateAquiferFluxRate() const { double aquifer_flux = 0.0; if (! this->connects_to_reservoir_) { return aquifer_flux; } ElementContext elem_ctx(this->ebos_simulator_); const auto& gridView = this->ebos_simulator_.gridView(); for (const auto& elem : elements(gridView, Dune::Partitions::interior)) { // elem_ctx.updatePrimaryStencil(elem); elem_ctx.updateStencil(elem); const std::size_t cell_index = elem_ctx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0); const int idx = this->cell_to_aquifer_cell_idx_[cell_index]; // we only need the first aquifer cell if (idx != 0) { continue; } const std::size_t num_interior_faces = elem_ctx.numInteriorFaces(/*timeIdx*/ 0); // const auto &problem = elem_ctx.problem(); const auto& stencil = elem_ctx.stencil(0); // const auto& inQuants = elem_ctx.intensiveQuantities(0, /*timeIdx*/ 0); for (std::size_t face_idx = 0; face_idx < num_interior_faces; ++face_idx) { const auto& face = stencil.interiorFace(face_idx); // dof index const std::size_t i = face.interiorIndex(); const std::size_t j = face.exteriorIndex(); // compressed index // const size_t I = stencil.globalSpaceIndex(i); const std::size_t J = stencil.globalSpaceIndex(j); assert(stencil.globalSpaceIndex(i) == cell_index); // we do not consider the flux within aquifer cells // we only need the flux to the connections if (this->cell_to_aquifer_cell_idx_[J] > 0) { continue; } elem_ctx.updateAllIntensiveQuantities(); elem_ctx.updateAllExtensiveQuantities(); const double water_flux = getWaterFlux(elem_ctx,face_idx); const std::size_t up_id = water_flux >= 0.0 ? i : j; const auto& intQuantsIn = elem_ctx.intensiveQuantities(up_id, 0); const double invB = Toolbox::value(intQuantsIn.fluidState().invB(this->phaseIdx_())); const double face_area = face.area(); aquifer_flux += water_flux * invB * face_area; } // we only need to handle the first aquifer cell, we can exit loop here break; } return aquifer_flux; } double flux_rate_; // aquifer influx rate double cumulative_flux_; // cumulative aquifer influx std::vector init_pressure_{}; double pressure_; // aquifer pressure bool solution_set_from_restart_ {false}; bool connects_to_reservoir_ {false}; // TODO: maybe unordered_map can also do the work to save memory? std::vector cell_to_aquifer_cell_idx_; }; } // namespace Opm #endif