/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include "config.h"
#include
#include
#include
#include
namespace Opm
{
// ---------------- Methods for class DGBasisInterface ----------------
/// Virtual destructor.
DGBasisInterface::~DGBasisInterface()
{
}
/// Evaluate function f = sum_i c_i b_i at the point x.
/// Note that this function is not virtual, but implemented in
/// terms of the virtual functions of the class.
/// \param[in] cell Cell index
/// \param[in] coefficients Coefficients {c_i} for a single cell.
/// \param[in] x Point at which to compute f(x).
double DGBasisInterface::evalFunc(const int cell,
const double* coefficients,
const double* x) const
{
bvals_.resize(numBasisFunc());
eval(cell, x, &bvals_[0]);
return std::inner_product(bvals_.begin(), bvals_.end(), coefficients, 0.0);
}
// ---------------- Methods for class DGBasisBoundedTotalDegree ----------------
/// Constructor.
/// \param[in] grid grid on which basis is used (cell-wise)
/// \param[in] degree polynomial degree of basis
DGBasisBoundedTotalDegree::DGBasisBoundedTotalDegree(const UnstructuredGrid& grid,
const int degree_arg)
: grid_(grid),
degree_(degree_arg)
{
if (grid_.dimensions > 3) {
OPM_THROW(std::runtime_error, "Grid dimension must be 1, 2 or 3.");
}
if (degree_ > 1 || degree_ < 0) {
OPM_THROW(std::runtime_error, "Degree must be 0 or 1.");
}
}
/// Destructor.
DGBasisBoundedTotalDegree::~DGBasisBoundedTotalDegree()
{
}
/// The number of basis functions per cell.
int DGBasisBoundedTotalDegree::numBasisFunc() const
{
switch (dimensions()) {
case 1:
return degree_ + 1;
case 2:
return (degree_ + 2)*(degree_ + 1)/2;
case 3:
return (degree_ + 3)*(degree_ + 2)*(degree_ + 1)/6;
default:
OPM_THROW(std::runtime_error, "Dimensions must be 1, 2 or 3.");
}
}
/// The number of space dimensions.
int DGBasisBoundedTotalDegree::dimensions() const
{
return grid_.dimensions;
}
/// The polynomial degree of the basis functions.
int DGBasisBoundedTotalDegree::degree() const
{
return degree_;
}
/// Evaluate all basis functions associated with cell at x,
/// writing to f_x. The array f_x must have size equal to
/// numBasisFunc().
void DGBasisBoundedTotalDegree::eval(const int cell,
const double* x,
double* f_x) const
{
const int dim = dimensions();
const double* cc = grid_.cell_centroids + dim*cell;
// Note intentional fallthrough in this switch statement!
switch (degree_) {
case 1:
for (int ix = 0; ix < dim; ++ix) {
f_x[1 + ix] = x[ix] - cc[ix];
}
case 0:
f_x[0] = 1;
break;
default:
OPM_THROW(std::runtime_error, "Maximum degree is 1 for now.");
}
}
/// Evaluate gradients of all basis functions associated with
/// cell at x, writing to grad_f_x. The array grad_f_x must
/// have size numBasisFunc() * dimensions(). The dimensions()
/// components of the first basis function gradient come
/// before the components of the second etc.
void DGBasisBoundedTotalDegree::evalGrad(const int /*cell*/,
const double* /*x*/,
double* grad_f_x) const
{
const int dim = dimensions();
const int num_basis = numBasisFunc();
std::fill(grad_f_x, grad_f_x + num_basis*dim, 0.0);
if (degree_ == 1) {
for (int ix = 0; ix < dim; ++ix) {
grad_f_x[dim*(ix + 1) + ix] = 1.0;
}
}
}
/// Modify basis coefficients to add to the function value.
/// A function f = sum_i c_i b_i is assumed, and we change
/// it to (f + increment) by modifying the c_i. This is done without
/// modifying its gradient.
/// \param[in] increment Add this value to the function.
/// \param[out] coefficients Coefficients {c_i} for a single cell.
void DGBasisBoundedTotalDegree::addConstant(const double increment,
double* coefficients) const
{
coefficients[0] += increment;
}
/// Modify basis coefficients to change the function's slope.
/// A function f = sum_i c_i b_i is assumed, and we change
/// it to a function g with the property that grad g = factor * grad f
/// by modifying the c_i. This is done without modifying the average,
/// i.e. the integrals of g and f over the cell are the same.
/// \param[in] factor Multiply gradient by this factor.
/// \param[out] coefficients Coefficients {c_i} for a single cell.
void DGBasisBoundedTotalDegree::multiplyGradient(const double factor,
double* coefficients) const
{
const int nb = numBasisFunc();
for (int ix = 1; ix < nb; ++ix) {
coefficients[ix] *= factor;
}
}
/// Compute the average of the function f = sum_i c_i b_i.
/// \param[in] coefficients Coefficients {c_i} for a single cell.
double DGBasisBoundedTotalDegree::functionAverage(const double* coefficients) const
{
return coefficients[0];
}
// ---------------- Methods for class DGBasisMultilin ----------------
/// Constructor.
/// \param[in] grid grid on which basis is used (cell-wise)
/// \param[in] degree polynomial degree of basis
DGBasisMultilin::DGBasisMultilin(const UnstructuredGrid& grid,
const int degree_arg)
: grid_(grid),
degree_(degree_arg)
{
if (grid_.dimensions > 3) {
OPM_THROW(std::runtime_error, "Grid dimension must be 1, 2 or 3.");
}
if (degree_ > 1 || degree_ < 0) {
OPM_THROW(std::runtime_error, "Degree must be 0 or 1.");
}
}
/// Destructor.
DGBasisMultilin::~DGBasisMultilin()
{
}
/// The number of basis functions per cell.
int DGBasisMultilin::numBasisFunc() const
{
switch (dimensions()) {
case 1:
return degree_ + 1;
case 2:
return (degree_ + 1)*(degree_ + 1);
case 3:
return (degree_ + 1)*(degree_ + 1)*(degree_ + 1);
default:
OPM_THROW(std::runtime_error, "Dimensions must be 1, 2 or 3.");
}
}
/// The number of space dimensions.
int DGBasisMultilin::dimensions() const
{
return grid_.dimensions;
}
/// The polynomial degree of the basis functions.
int DGBasisMultilin::degree() const
{
return degree_;
}
/// Evaluate all basis functions associated with cell at x,
/// writing to f_x. The array f_x must have size equal to
/// numBasisFunc().
void DGBasisMultilin::eval(const int cell,
const double* x,
double* f_x) const
{
const int dim = dimensions();
const int num_basis = numBasisFunc();
const double* cc = grid_.cell_centroids + dim*cell;
switch (degree_) {
case 0:
f_x[0] = 1;
break;
case 1:
std::fill(f_x, f_x + num_basis, 1.0);
for (int dd = 0; dd < dim; ++dd) {
const double f[2] = { 0.5 - x[dd] + cc[dd], 0.5 + x[dd] - cc[dd] };
const int divi = 1 << (dim - dd - 1); // { 4, 2, 1 } for 3d, for example.
for (int ix = 0; ix < num_basis; ++ix) {
f_x[ix] *= f[(ix/divi) % 2];
}
}
break;
default:
OPM_THROW(std::runtime_error, "Maximum degree is 1 for now.");
}
}
/// Evaluate gradients of all basis functions associated with
/// cell at x, writing to grad_f_x. The array grad_f_x must
/// have size numBasisFunc() * dimensions(). The dimensions()
/// components of the first basis function gradient come
/// before the components of the second etc.
void DGBasisMultilin::evalGrad(const int cell,
const double* x,
double* grad_f_x) const
{
const int dim = dimensions();
const int num_basis = numBasisFunc();
const double* cc = grid_.cell_centroids + dim*cell;
switch (degree_) {
case 0:
std::fill(grad_f_x, grad_f_x + num_basis*dim, 0.0);
break;
case 1:
std::fill(grad_f_x, grad_f_x + num_basis*dim, 1.0);
for (int dd = 0; dd < dim; ++dd) {
const double f[2] = { 0.5 - x[dd] + cc[dd], 0.5 + x[dd] - cc[dd] };
const double fder[2] = { -1.0, 1.0 };
const int divi = 1 << (dim - dd - 1); // { 4, 2, 1 } for 3d, for example.
for (int ix = 0; ix < num_basis; ++ix) {
const int ind = (ix/divi) % 2;
for (int dder = 0; dder < dim; ++dder) {
grad_f_x[ix*dim + dder] *= (dder == dd ? fder[ind] : f[ind]);
}
}
}
break;
default:
OPM_THROW(std::runtime_error, "Maximum degree is 1 for now.");
}
}
/// Modify basis coefficients to add to the function value.
/// A function f = sum_i c_i b_i is assumed, and we change
/// it to (f + increment) by modifying the c_i. This is done without
/// modifying its gradient.
/// \param[in] increment Add this value to the function.
/// \param[out] coefficients Coefficients {c_i} for a single cell.
void DGBasisMultilin::addConstant(const double increment,
double* coefficients) const
{
const int nb = numBasisFunc();
const double term = increment/double(nb);
for (int ix = 0; ix < nb; ++ix) {
coefficients[ix] += term;
}
}
/// Modify basis coefficients to change the function's slope.
/// A function f = sum_i c_i b_i is assumed, and we change
/// it to a function g with the property that grad g = factor * grad f
/// by modifying the c_i. This is done without modifying the average,
/// i.e. the integrals of g and f over the cell are the same.
/// \param[in] factor Multiply gradient by this factor.
/// \param[out] coefficients Coefficients {c_i} for a single cell.
void DGBasisMultilin::multiplyGradient(const double factor,
double* coefficients) const
{
const int nb = numBasisFunc();
const double aver = functionAverage(coefficients);
for (int ix = 0; ix < nb; ++ix) {
coefficients[ix] = factor*(coefficients[ix] - aver) + aver;
}
}
/// Compute the average of the function f = sum_i c_i b_i.
/// \param[in] coefficients Coefficients {c_i} for a single cell.
double DGBasisMultilin::functionAverage(const double* coefficients) const
{
const int nb = numBasisFunc();
return std::accumulate(coefficients, coefficients + nb, 0.0)/double(nb);
}
} // namespace Opm