/* Copyright 2019 SINTEF Digital, Mathematics and Cybernetics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE OPM_test_PreconditionerFactory #include #include #include #include #include #include #include #include #include #include #include #include #include #include template class NothingPreconditioner : public Dune::Preconditioner { public: virtual void pre(X&, X&) override { } virtual void apply(X& v, const X& d) override { v = d; } virtual void post(X&) override { } virtual Dune::SolverCategory::Category category() const override { return Dune::SolverCategory::sequential; } }; template Dune::BlockVector> testPrec(const Opm::PropertyTree& prm, const std::string& matrix_filename, const std::string& rhs_filename) { using Matrix = Dune::BCRSMatrix>; using Vector = Dune::BlockVector>; Matrix matrix; { std::ifstream mfile(matrix_filename); if (!mfile) { throw std::runtime_error("Could not read matrix file"); } using M = Dune::BCRSMatrix>; readMatrixMarket(reinterpret_cast(matrix), mfile); // Hack to avoid hassle } Vector rhs; { std::ifstream rhsfile(rhs_filename); if (!rhsfile) { throw std::runtime_error("Could not read rhs file"); } readMatrixMarket(rhs, rhsfile); } using Operator = Dune::MatrixAdapter; Operator op(matrix); using PrecFactory = Opm::PreconditionerFactory; bool transpose = false; if(prm.get("preconditioner.type") == "cprt"){ transpose = true; } auto wc = [&matrix, transpose]() { return Opm::Amg::getQuasiImpesWeights(matrix, 1, transpose); }; auto prec = PrecFactory::create(op, prm.get_child("preconditioner"), wc, 1); Dune::BiCGSTABSolver solver(op, *prec, prm.get("tol"), prm.get("maxiter"), prm.get("verbosity")); Vector x(rhs.size()); Dune::InverseOperatorResult res; solver.apply(x, rhs, res); return x; } void test1(const Opm::PropertyTree& prm) { const int bz = 1; auto sol = testPrec(prm, "matr33.txt", "rhs3.txt"); Dune::BlockVector> expected {-1.62493, -1.76435e-06, 1.86991e-10, -458.542, 2.28308e-06, -2.45341e-07, -1.48005, -5.02264e-07, -1.049e-05}; BOOST_REQUIRE_EQUAL(sol.size(), expected.size()); for (size_t i = 0; i < sol.size(); ++i) { for (int row = 0; row < bz; ++row) { BOOST_CHECK_CLOSE(sol[i][row], expected[i][row], 1e-3); } } } void test3(const Opm::PropertyTree& prm) { const int bz = 3; auto sol = testPrec(prm, "matr33.txt", "rhs3.txt"); Dune::BlockVector> expected {{-1.62493, -1.76435e-06, 1.86991e-10}, {-458.542, 2.28308e-06, -2.45341e-07}, {-1.48005, -5.02264e-07, -1.049e-05}}; BOOST_REQUIRE_EQUAL(sol.size(), expected.size()); for (size_t i = 0; i < sol.size(); ++i) { for (int row = 0; row < bz; ++row) { BOOST_CHECK_CLOSE(sol[i][row], expected[i][row], 1e-3); } } } BOOST_AUTO_TEST_CASE(TestDefaultPreconditionerFactory) { // Read parameters. Opm::PropertyTree prm("options_flexiblesolver.json"); // Test with 1x1 block solvers. test1(prm); // Test with 3x3 block solvers. test3(prm); } template using M = Dune::BCRSMatrix>; template using V = Dune::BlockVector>; template using O = Dune::MatrixAdapter, V, V>; template using PF = Opm::PreconditionerFactory,Dune::Amg::SequentialInformation>; BOOST_AUTO_TEST_CASE(TestAddingPreconditioner) { // Read parameters. Opm::PropertyTree prm("options_flexiblesolver_simple.json"); // Test with 1x1 block solvers. { const int bz = 1; BOOST_CHECK_THROW(testPrec(prm, "matr33.txt", "rhs3.txt"), std::invalid_argument); } // Test with 3x3 block solvers. { const int bz = 3; BOOST_CHECK_THROW(testPrec(prm, "matr33.txt", "rhs3.txt"), std::invalid_argument); } // Add preconditioner to factory for block size 1. PF<1>::addCreator("nothing", [](const O<1>&, const Opm::PropertyTree&, const std::function()>&, std::size_t) { return Dune::wrapPreconditioner>>(); }); // Test with 1x1 block solvers. test1(prm); // Test with 3x3 block solvers. { const int bz = 3; BOOST_CHECK_THROW(testPrec(prm, "matr33.txt", "rhs3.txt"), std::invalid_argument); } // Add preconditioner to factory for block size 3. PF<3>::addCreator("nothing", [](const O<3>&, const Opm::PropertyTree&, const std::function()>&, std::size_t) { return Dune::wrapPreconditioner>>(); }); // Test with 1x1 block solvers. test1(prm); // Test with 3x3 block solvers. test3(prm); } template class RepeatingOperator : public Dune::AssembledLinearOperator { public: using matrix_type = Mat; using domain_type = Vec; using range_type = Vec; using field_type = typename Vec::field_type; Dune::SolverCategory::Category category() const override { return Dune::SolverCategory::sequential; } RepeatingOperator(const Mat& matrix, const int repeats) : matrix_(matrix) , repeats_(repeats) { } // y = A*x; virtual void apply(const Vec& x, Vec& y) const override { y = 0; applyscaleadd(1.0, x, y); } // y += \alpha * A * x virtual void applyscaleadd(field_type alpha, const Vec& x, Vec& y) const override { Vec temp1 = x; Vec temp2 = x; // For size. temp2 = 0.0; for (int rr = 0; rr < repeats_; ++rr) { // mv below means: temp2 = matrix_ * temp1; matrix_.mv(temp1, temp2); temp1 = temp2; } temp2 *= alpha; y += temp2; } virtual const matrix_type& getmat() const override { return matrix_; } protected: const Mat& matrix_; const int repeats_; }; template Dune::BlockVector> testPrecRepeating(const Opm::PropertyTree& prm, const std::string& matrix_filename, const std::string& rhs_filename) { using Matrix = M; using Vector = V; Matrix matrix; { std::ifstream mfile(matrix_filename); if (!mfile) { throw std::runtime_error("Could not read matrix file"); } using M = Dune::BCRSMatrix>; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wstrict-aliasing" readMatrixMarket(reinterpret_cast(matrix), mfile); // Hack to avoid hassle #pragma GCC diagnostic pop } Vector rhs; { std::ifstream rhsfile(rhs_filename); if (!rhsfile) { throw std::runtime_error("Could not read rhs file"); } readMatrixMarket(rhs, rhsfile); } using Operator = RepeatingOperator; Operator op(matrix, 2); using PrecFactory = Opm::PreconditionerFactory; // Add no-oppreconditioner to factory for block size 1. PrecFactory::addCreator("nothing", [](const Operator&, const Opm::PropertyTree&, const std::function&, std::size_t) { return Dune::wrapPreconditioner>(); }); auto prec = PrecFactory::create(op, prm.get_child("preconditioner")); Dune::BiCGSTABSolver solver(op, *prec, prm.get("tol"), prm.get("maxiter"), prm.get("verbosity")); Vector x(rhs.size()); Dune::InverseOperatorResult res; solver.apply(x, rhs, res); return x; } void test1rep(const Opm::PropertyTree& prm) { const int bz = 1; auto sol = testPrecRepeating(prm, "matr33rep.txt", "rhs3rep.txt"); Dune::BlockVector> expected {0.285714285714286, 0.285714285714286, 0.285714285714286, -0.214285714285714, -0.214285714285714, -0.214285714285714, -0.214285714285714, -0.214285714285714, -0.214285714285714}; BOOST_REQUIRE_EQUAL(sol.size(), expected.size()); for (size_t i = 0; i < sol.size(); ++i) { for (int row = 0; row < bz; ++row) { BOOST_CHECK_CLOSE(sol[i][row], expected[i][row], 1e-3); } } } void test3rep(const Opm::PropertyTree& prm) { const int bz = 3; auto sol = testPrecRepeating(prm, "matr33rep.txt", "rhs3rep.txt"); Dune::BlockVector> expected { {0.285714285714286, 0.285714285714286, 0.285714285714286}, {-0.214285714285714, -0.214285714285714, -0.214285714285714}, {-0.214285714285714, -0.214285714285714, -0.214285714285714} }; BOOST_REQUIRE_EQUAL(sol.size(), expected.size()); for (size_t i = 0; i < sol.size(); ++i) { for (int row = 0; row < bz; ++row) { BOOST_CHECK_CLOSE(sol[i][row], expected[i][row], 1e-3); } } } BOOST_AUTO_TEST_CASE(TestWithRepeatingOperator) { // Read parameters. Opm::PropertyTree prm("options_flexiblesolver_simple.json"); // Test with 1x1 block solvers. test1rep(prm); // Test with 3x3 block solvers. test3rep(prm); }