/* Copyright 2014 Dr. Markus Blatt - HPC-Simulation-Software & Services This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #if HAVE_DYNAMIC_BOOST_TEST #define BOOST_TEST_DYN_LINK #endif #define NVERBOSE // to suppress our messages when throwing #define BOOST_TEST_MODULE OPM-ParallelIterativeSolverTest #include // MPI header #if HAVE_MPI #include #include #include #include #include #include #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3) #include #include #else #include #include #endif #include #include #else #error "This file needs to compiled with MPI support!" #endif #include #include #include #include #include struct MPIFixture { MPIFixture() { int m_argc = boost::unit_test::framework::master_test_suite().argc; char** m_argv = boost::unit_test::framework::master_test_suite().argv; MPI_Init(&m_argc, &m_argv); } ~MPIFixture() { MPI_Finalize(); } }; BOOST_GLOBAL_FIXTURE(MPIFixture); struct MyMatrix { MyMatrix(std::size_t rows, std::size_t nnz) : data(nnz, 0.0), rowStart(rows+1, -1), colIndex(nnz, -1) {} MyMatrix() : data(), rowStart(), colIndex() {} std::vector data; std::vector rowStart; std::vector colIndex; }; typedef int LocalId; typedef int GlobalId; typedef Dune::OwnerOverlapCopyCommunication Communication; typedef Dune::OwnerOverlapCopyAttributeSet GridAttributes; typedef GridAttributes::AttributeSet GridFlag; typedef Dune::ParallelLocalIndex LocalIndex; /// \brief Sets up a paralle Laplacian. /// /// The process stores the unknowns with indices in the range [start, end). /// As we use an overlapping domain decomposition, the process owns the indices /// in the range [istart, iend]. If we would only used the indices in this range then /// they form a partitioning of the whole index set. /// \tparam I The type of the parallel index set (for convenience) /// \param indexset The parallel index set for marking owner and copy region. /// \param N The global number of unknowns of the system. /// \param start The first index stored on this process /// \param end One past the last index stored on this process /// \param istart The first index that the process owns. /// \param iend One past the last index the process owns. template std::shared_ptr create1DLaplacian(I& indexset, int N, int start, int end, int istart, int iend) { indexset.beginResize(); MyMatrix* mm=new MyMatrix(end-start, (end-start)*3); int nnz=0; mm->rowStart[0]=0; assert(start==0||start=iend) { // We are in the overlap region of the grid // therefore we setup the system such that // right hand side will equal the left hand side // of the linear system. if(localRow>0) { mm->colIndex[nnz]=localRow-1; mm->data[nnz++]=0; } mm->colIndex[nnz]=localRow; mm->data[nnz++]=1.0; indexset.add(row, LocalIndex(localRow, GridAttributes::copy, true)); if(localRowcolIndex[nnz]=localRow+1; mm->data[nnz++]=0; } mm->rowStart[localRow+1]=nnz; continue; } double dval=0; if(row>0) { mm->colIndex[nnz]=localRow-1; mm->data[nnz++]=-1; dval+=1; } mm->colIndex[nnz]=localRow; mm->data[nnz++]=2;//dval+(rowcolIndex[nnz]=localRow+1; mm->data[nnz++]=-1; dval+=1; } mm->rowStart[localRow+1]=nnz; indexset.add(row, LocalIndex(localRow, GridAttributes::owner, true)); } mm->data.resize(nnz); mm->colIndex.resize(nnz); indexset.endResize(); return std::shared_ptr(mm); } template void createRandomVectors(O& pinfo, int NN, std::vector& x, std::vector& b, const MyMatrix& mat) { x.resize(NN); for(auto entry=x.begin(), end =x.end(); entry!=end; ++entry) *entry=((double) (rand()%100))/10.0; pinfo.copyOwnerToAll(x,x); b.resize(NN); // Construct the right hand side as b=A*x std::fill(b.begin(), b.end(), 0.0); for(std::size_t row=0; row0) start = istart - 1; else start = istart; if(iend x(end-start), b(end-start); createRandomVectors(comm, end-start, x, b, *mat); std::vector exact(x); std::fill(x.begin(), x.end(), 0.0); Opm::LinearSolverFactory ls(param); boost::any anyComm(comm); ls.solve(b.size(), mat->data.size(), &(mat->rowStart[0]), &(mat->colIndex[0]), &(mat->data[0]), &(b[0]), &(x[0]), anyComm); } #ifdef HAVE_DUNE_ISTL BOOST_AUTO_TEST_CASE(CGAMGTest) { Opm::parameter::ParameterGroup param; param.insertParameter(std::string("linsolver"), std::string("istl")); param.insertParameter(std::string("linsolver_type"), std::string("1")); param.insertParameter(std::string("linsolver_max_iterations"), std::string("200")); run_test(param); } BOOST_AUTO_TEST_CASE(CGILUTest) { Opm::parameter::ParameterGroup param; param.insertParameter(std::string("linsolver"), std::string("istl")); param.insertParameter(std::string("linsolver_type"), std::string("0")); param.insertParameter(std::string("linsolver_max_iterations"), std::string("200")); run_test(param); } BOOST_AUTO_TEST_CASE(BiCGILUTest) { Opm::parameter::ParameterGroup param; param.insertParameter(std::string("linsolver"), std::string("istl")); param.insertParameter(std::string("linsolver_type"), std::string("2")); param.insertParameter(std::string("linsolver_max_iterations"), std::string("200")); run_test(param); } #endif