/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_STANDARDWELL_EVAL_HEADER_INCLUDED #define OPM_STANDARDWELL_EVAL_HEADER_INCLUDED #include #include #include #include namespace Opm { class ConvergenceReport; class DeferredLogger; class GroupState; class Schedule; class SummaryState; class WellContributions; template class WellInterfaceIndices; class WellState; template class StandardWellEval : public StandardWellGeneric { protected: // number of the conservation equations static constexpr int numWellConservationEq = Indices::numPhases + Indices::numSolvents; // number of the well control equations static constexpr int numWellControlEq = 1; // number of the well equations that will always be used // based on the solution strategy, there might be other well equations be introduced static constexpr int numStaticWellEq = numWellConservationEq + numWellControlEq; // the index for Bhp in primary variables and also the index of well control equation // they both will be the last one in their respective system. // TODO: we should have indices for the well equations and well primary variables separately static constexpr int Bhp = numStaticWellEq - numWellControlEq; // the positions of the primary variables for StandardWell // the first one is the weighted total rate (WQ_t), the second and the third ones are F_w and F_g, // which represent the fraction of Water and Gas based on the weighted total rate, the last one is BHP. // correspondingly, we have four well equations for blackoil model, the first three are mass // converstation equations, and the last one is the well control equation. // primary variables related to other components, will be before the Bhp and after F_g. // well control equation is always the last well equation. // TODO: in the current implementation, we use the well rate as the first primary variables for injectors, // instead of G_t. // Table showing the primary variable indices, depending on what phases are present: // // WOG OG WG WO W/O/G (single phase) // GTotal 0 0 0 0 0 // WFrac 1 -1000 -1000 1 -1000 // GFrac 2 1 1 -1000 -1000 // Spres 3 2 2 2 1 static const int WQTotal = 0; // In the implementation, one should use has_wfrac_variable // rather than has_water to check if you should do something // with the variable at the WFrac location, similar for GFrac. // (following implementation MultisegmentWellEval.hpp) static const bool waterEnabled = Indices::waterEnabled; static const bool gasEnabled = Indices::gasEnabled; static const bool oilEnabled = Indices::oilEnabled; static constexpr bool has_wfrac_variable = Indices::waterEnabled && Indices::oilEnabled; static constexpr bool has_gfrac_variable = Indices::gasEnabled && Indices::numPhases > 1; static constexpr int WFrac = has_wfrac_variable ? 1 : -1000; static constexpr int GFrac = has_gfrac_variable ? has_wfrac_variable + 1 : -1000; static constexpr int SFrac = !Indices::enableSolvent ? -1000 : 3; public: using EvalWell = DenseAd::DynamicEvaluation; using Eval = DenseAd::Evaluation; using BVectorWell = typename StandardWellGeneric::BVectorWell; #if HAVE_CUDA || HAVE_OPENCL /// add the contribution (C, D^-1, B matrices) of this Well to the WellContributions object void addWellContribution(WellContributions& wellContribs) const; #endif protected: StandardWellEval(const WellInterfaceIndices& baseif); const WellInterfaceIndices& baseif_; void initPrimaryVariablesEvaluation() const; const EvalWell& getBhp() const { return primary_variables_evaluation_[Bhp]; } const EvalWell& getWQTotal() const { return primary_variables_evaluation_[WQTotal]; } EvalWell extendEval(const Eval& in) const; EvalWell getQs(const int compIdx) const; EvalWell wellSurfaceVolumeFraction(const int compIdx) const; EvalWell wellVolumeFraction(const unsigned compIdx) const; EvalWell wellVolumeFractionScaled(const int phase) const; // calculate a relaxation factor to avoid overshoot of the fractions for producers // which might result in negative rates static double relaxationFactorFractionsProducer(const std::vector& primary_variables, const BVectorWell& dwells); void assembleControlEq(const WellState& well_state, const GroupState& group_state, const Schedule& schedule, const SummaryState& summaryState, DeferredLogger& deferred_logger); // computing the accumulation term for later use in well mass equations void computeAccumWell(); // TODO: not total sure whether it is a good idea to put this function here // the major reason to put here is to avoid the usage of Wells struct void computeConnectionDensities(const std::vector& perfComponentRates, const std::vector& b_perf, const std::vector& rsmax_perf, const std::vector& rvmax_perf, const std::vector& surf_dens_perf); ConvergenceReport getWellConvergence(const WellState& well_state, const std::vector& B_avg, const double maxResidualAllowed, const double tol_wells, const double relaxed_tolerance_flow, const bool relax_tolerance, std::vector& res, DeferredLogger& deferred_logger) const; void init(std::vector& perf_depth, const std::vector& depth_arg, const int num_cells, const bool has_polymermw); // handle the non reasonable fractions due to numerical overshoot void processFractions() const; void updatePrimaryVariables(const WellState& well_state, DeferredLogger& deferred_logger) const; void updatePrimaryVariablesPolyMW(const BVectorWell& dwells) const; void updateWellStateFromPrimaryVariables(WellState& well_state, DeferredLogger& deferred_logger) const; void updatePrimaryVariablesNewton(const BVectorWell& dwells, const double dFLimit, const double dBHPLimit) const; void updateWellStateFromPrimaryVariablesPolyMW(WellState& well_state) const; void updateThp(WellState& well_state, DeferredLogger& deferred_logger) const; // total number of the well equations and primary variables // there might be extra equations be used, numWellEq will be updated during the initialization int numWellEq_ = numStaticWellEq; // the values for the primary varibles // based on different solutioin strategies, the wells can have different primary variables mutable std::vector primary_variables_; // the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation mutable std::vector primary_variables_evaluation_; // the saturations in the well bore under surface conditions at the beginning of the time step std::vector F0_; }; } #endif // OPM_STANDARDWELL_EVAL_HEADER_INCLUDED