/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm
{
template
MultisegmentWellEval::
MultisegmentWellEval(WellInterfaceIndices& baseif)
: MultisegmentWellGeneric(baseif)
, baseif_(baseif)
, linSys_(*this)
, upwinding_segments_(this->numberOfSegments(), 0)
, segment_densities_(this->numberOfSegments(), 0.0)
, segment_mass_rates_(this->numberOfSegments(), 0.0)
, segment_viscosities_(this->numberOfSegments(), 0.0)
, segment_phase_densities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here?
, segment_phase_fractions_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here?
, segment_phase_viscosities_(this->numberOfSegments(), std::vector(baseif_.numComponents(), 0.0)) // number of phase here?
, cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0)
, cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0)
{
}
template
void
MultisegmentWellEval::
initMatrixAndVectors(const int num_cells)
{
linSys_.init(num_cells, baseif_.numPerfs(), baseif_.cells());
primary_variables_.resize(this->numberOfSegments());
primary_variables_evaluation_.resize(this->numberOfSegments());
}
template
void
MultisegmentWellEval::
initPrimaryVariablesEvaluation()
{
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
primary_variables_evaluation_[seg][eq_idx] = 0.0;
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + Indices::numEq, 1.0);
}
}
}
template
ConvergenceReport
MultisegmentWellEval::
getWellConvergence(const WellState& well_state,
const std::vector& B_avg,
DeferredLogger& deferred_logger,
const double max_residual_allowed,
const double tolerance_wells,
const double relaxed_inner_tolerance_flow_ms_well,
const double tolerance_pressure_ms_wells,
const double relaxed_inner_tolerance_pressure_ms_well,
const bool relax_tolerance) const
{
assert(int(B_avg.size()) == baseif_.numComponents());
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector> abs_residual(this->numberOfSegments(), std::vector(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
std::vector maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
} else { // pressure or control equation
// for the top segment (seg == 0), it is control equation, will be checked later separately
if (seg > 0) {
// Pressure equation
const double pressure_residual = abs_residual[seg][eq_idx];
if (pressure_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residual;
}
}
}
}
}
using CR = ConvergenceReport;
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const double flux_residual = maximum_residual[eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()});
} else if (flux_residual > max_residual_allowed) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()});
} else if (!relax_tolerance && flux_residual > tolerance_wells) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
} else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
}
} else { // pressure equation
const double pressure_residual = maximum_residual[eq_idx];
const int dummy_component = -1;
if (std::isnan(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (std::isinf(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
} else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{tolerance_pressure_ms_wells,
tolerance_pressure_ms_wells,
tolerance_wells,
tolerance_wells,
max_residual_allowed},
std::abs(linSys_.residual()[0][SPres]),
report,
deferred_logger);
return report;
}
template
void
MultisegmentWellEval::
processFractions(const int seg)
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
const PhaseUsage& pu = baseif_.phaseUsage();
std::vector fractions(baseif_.numPhases(), 0.0);
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
fractions[oil_pos] = 1.0;
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
if (fractions[water_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[water_pos]);
fractions[water_pos] = 0.0;
}
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
if (fractions[gas_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]);
}
fractions[oil_pos] /= (1.0 - fractions[gas_pos]);
fractions[gas_pos] = 0.0;
}
}
if (fractions[oil_pos] < 0.0) {
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]);
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]);
}
fractions[oil_pos] = 0.0;
}
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]];
}
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]];
}
}
template
void
MultisegmentWellEval::
updatePrimaryVariablesNewton(const BVectorWell& dwells,
const double relaxation_factor,
const double dFLimit,
const double max_pressure_change)
{
const std::vector > old_primary_variables = primary_variables_;
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
if (has_wfrac_variable) {
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]) * relaxation_factor, dFLimit);
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
}
if (has_gfrac_variable) {
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]) * relaxation_factor, dFLimit);
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
}
// handling the overshooting or undershooting of the fractions
processFractions(seg);
// update the segment pressure
{
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]) * relaxation_factor, max_pressure_change);
primary_variables_[seg][SPres] = std::max( old_primary_variables[seg][SPres] - dx_limited, 1e5);
}
// update the total rate // TODO: should we have a limitation of the total rate change?
{
primary_variables_[seg][WQTotal] = old_primary_variables[seg][WQTotal] - relaxation_factor * dwells[seg][WQTotal];
// make sure that no injector produce and no producer inject
if (seg == 0) {
if (baseif_.isInjector()) {
primary_variables_[seg][WQTotal] = std::max( primary_variables_[seg][WQTotal], 0.0);
} else {
primary_variables_[seg][WQTotal] = std::min( primary_variables_[seg][WQTotal], 0.0);
}
}
}
}
}
template
void
MultisegmentWellEval::
updatePrimaryVariables(const WellState& well_state)
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Gas = BlackoilPhases::Vapour;
// TODO: to test using rate conversion coefficients to see if it will be better than
// this default one
if (!baseif_.isOperableAndSolvable() && !baseif_.wellIsStopped()) return;
const Well& well = baseif_.wellEcl();
// the index of the top segment in the WellState
const auto& ws = well_state.well(baseif_.indexOfWell());
const auto& segments = ws.segments;
// maybe a throw for parallel running?
assert(int(segments.size()) == this->numberOfSegments());
const auto& segment_rates = segments.rates;
const auto& segment_pressure = segments.pressure;
const PhaseUsage& pu = baseif_.phaseUsage();
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
// calculate the total rate for each segment
double total_seg_rate = 0.0;
// the segment pressure
primary_variables_[seg][SPres] = segment_pressure[seg];
// TODO: under what kind of circustances, the following will be wrong?
// the definition of g makes the gas phase is always the last phase
for (int p = 0; p < baseif_.numPhases(); p++) {
total_seg_rate += baseif_.scalingFactor(p) * segment_rates[baseif_.numPhases() * seg + p];
}
if (seg == 0) {
if (baseif_.isInjector()) {
total_seg_rate = std::max(total_seg_rate, 0.);
} else {
total_seg_rate = std::min(total_seg_rate, 0.);
}
}
primary_variables_[seg][WQTotal] = total_seg_rate;
if (std::abs(total_seg_rate) > 0.) {
if (has_wfrac_variable) {
const int water_pos = pu.phase_pos[Water];
primary_variables_[seg][WFrac] = baseif_.scalingFactor(water_pos) * segment_rates[baseif_.numPhases() * seg + water_pos] / total_seg_rate;
}
if (has_gfrac_variable) {
const int gas_pos = pu.phase_pos[Gas];
primary_variables_[seg][GFrac] = baseif_.scalingFactor(gas_pos) * segment_rates[baseif_.numPhases() * seg + gas_pos] / total_seg_rate;
}
} else { // total_seg_rate == 0
if (baseif_.isInjector()) {
// only single phase injection handled
auto phase = well.getInjectionProperties().injectorType;
if (has_wfrac_variable) {
if (phase == InjectorType::WATER) {
primary_variables_[seg][WFrac] = 1.0;
} else {
primary_variables_[seg][WFrac] = 0.0;
}
}
if (has_gfrac_variable) {
if (phase == InjectorType::GAS) {
primary_variables_[seg][GFrac] = 1.0;
} else {
primary_variables_[seg][GFrac] = 0.0;
}
}
} else if (baseif_.isProducer()) { // producers
if (has_wfrac_variable) {
primary_variables_[seg][WFrac] = 1.0 / baseif_.numPhases();
}
if (has_gfrac_variable) {
primary_variables_[seg][GFrac] = 1.0 / baseif_.numPhases();
}
}
}
}
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
volumeFraction(const int seg,
const unsigned compIdx) const
{
if (has_wfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
return primary_variables_evaluation_[seg][WFrac];
}
if (has_gfrac_variable && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
return primary_variables_evaluation_[seg][GFrac];
}
// Oil fraction
EvalWell oil_fraction = 1.0;
if (has_wfrac_variable) {
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
}
if (has_gfrac_variable) {
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
}
/* if (has_solvent) {
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
} */
return oil_fraction;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
volumeFractionScaled(const int seg,
const int comp_idx) const
{
// For reservoir rate control, the distr in well control is used for the
// rate conversion coefficients. For the injection well, only the distr of the injection
// phase is not zero.
const double scale = baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx));
if (scale > 0.) {
return volumeFraction(seg, comp_idx) / scale;
}
return volumeFraction(seg, comp_idx);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
surfaceVolumeFraction(const int seg,
const int comp_idx) const
{
EvalWell sum_volume_fraction_scaled = 0.;
for (int idx = 0; idx < baseif_.numComponents(); ++idx) {
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
}
assert(sum_volume_fraction_scaled.value() != 0.);
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getSegmentRateUpwinding(const int seg,
const size_t comp_idx) const
{
const int seg_upwind = upwinding_segments_[seg];
// the result will contain the derivative with respect to WQTotal in segment seg,
// and the derivatives with respect to WFrac GFrac in segment seg_upwind.
// the derivative with respect to SPres should be zero.
if (seg == 0 && baseif_.isInjector()) {
const Well& well = baseif_.wellEcl();
auto phase = well.getInjectionProperties().injectorType;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx) == comp_idx
&& phase == InjectorType::WATER)
return primary_variables_evaluation_[seg][WQTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx));
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx) == comp_idx
&& phase == InjectorType::OIL)
return primary_variables_evaluation_[seg][WQTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx));
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)
&& Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx) == comp_idx
&& phase == InjectorType::GAS)
return primary_variables_evaluation_[seg][WQTotal] / baseif_.scalingFactor(baseif_.ebosCompIdxToFlowCompIdx(comp_idx));
return 0.0;
}
const EvalWell segment_rate = primary_variables_evaluation_[seg][WQTotal] * volumeFractionScaled(seg_upwind, comp_idx);
assert(segment_rate.derivative(SPres + Indices::numEq) == 0.);
return segment_rate;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template
void
MultisegmentWellEval::
computeSegmentFluidProperties(const EvalWell& temperature,
const EvalWell& saltConcentration,
int pvt_region_index,
DeferredLogger& deferred_logger)
{
std::vector surf_dens(baseif_.numComponents());
// Surface density.
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx)) {
continue;
}
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index);
}
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
// the compostion of the components inside wellbore under surface condition
std::vector mix_s(baseif_.numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
}
std::vector b(baseif_.numComponents(), 0.0);
std::vector visc(baseif_.numComponents(), 0.0);
std::vector& phase_densities = segment_phase_densities_[seg];
const EvalWell seg_pressure = getSegmentPressure(seg);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, saltConcentration);
visc[waterCompIdx] =
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure, saltConcentration);
// TODO: double check here
// TODO: should not we use phaseIndex here?
phase_densities[waterCompIdx] = b[waterCompIdx] * surf_dens[waterCompIdx];
}
EvalWell rv(0.0);
EvalWell rvw(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv, rvw);
visc[gasCompIdx] =
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv, rvw);
phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx]
+ rv * b[gasCompIdx] * surf_dens[oilCompIdx];
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
phase_densities[gasCompIdx] = b[gasCompIdx] * surf_dens[gasCompIdx];
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[gasCompIdx] =
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
visc[oilCompIdx] =
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx]
+ rs * b[oilCompIdx] * surf_dens[gasCompIdx];
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
phase_densities[oilCompIdx] = b[oilCompIdx] * surf_dens[oilCompIdx];
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
visc[oilCompIdx] =
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
}
}
segment_phase_viscosities_[seg] = visc;
std::vector mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (d <= 0.0) {
std::ostringstream sstr;
sstr << "Problematic d value " << d << " obtained for well " << baseif_.name()
<< " during segment density calculations with rs " << rs
<< ", rv " << rv << " and pressure " << seg_pressure
<< " obtaining d " << d
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
<< " for this connection.";
deferred_logger.debug(sstr.str());
} else {
if (rs > 0.0) {
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv > 0.0) {
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
}
EvalWell volrat(0.0);
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
volrat += mix[comp_idx] / b[comp_idx];
}
this->segment_viscosities_[seg] = 0.;
// calculate the average viscosity
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
const EvalWell fraction = mix[comp_idx] / b[comp_idx] / volrat;
// TODO: a little more work needs to be done to handle the negative fractions here
this->segment_phase_fractions_[seg][comp_idx] = fraction; // >= 0.0 ? fraction : 0.0;
this->segment_viscosities_[seg] += visc[comp_idx] * this->segment_phase_fractions_[seg][comp_idx];
}
EvalWell density(0.0);
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
density += surf_dens[comp_idx] * mix_s[comp_idx];
}
this->segment_densities_[seg] = density / volrat;
// calculate the mass rates
segment_mass_rates_[seg] = 0.;
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
const EvalWell rate = getSegmentRateUpwinding(seg, comp_idx);
this->segment_mass_rates_[seg] += rate * surf_dens[comp_idx];
}
}
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getSegmentPressure(const int seg) const
{
return primary_variables_evaluation_[seg][SPres];
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getBhp() const
{
return getSegmentPressure(0);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getSegmentRate(const int seg,
const int comp_idx) const
{
return primary_variables_evaluation_[seg][WQTotal] * volumeFractionScaled(seg, comp_idx);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getQs(const int comp_idx) const
{
return getSegmentRate(0, comp_idx);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getSegmentWQTotal(const int seg) const
{
return primary_variables_evaluation_[seg][WQTotal];
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getWQTotal() const
{
return getSegmentWQTotal(0);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getHydroPressureLoss(const int seg) const
{
return segment_densities_[seg] * baseif_.gravity() * this->segment_depth_diffs_[seg];
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getFrictionPressureLoss(const int seg) const
{
const EvalWell mass_rate = segment_mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = segment_densities_[seg_upwind];
EvalWell visc = segment_viscosities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
density.clearDerivatives();
visc.clearDerivatives();
}
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const double length = this->segmentSet()[seg].totalLength() - this->segmentSet()[outlet_segment_index].totalLength();
assert(length > 0.);
const double roughness = this->segmentSet()[seg].roughness();
const double area = this->segmentSet()[seg].crossArea();
const double diameter = this->segmentSet()[seg].internalDiameter();
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
pressureDropSpiralICD(const int seg) const
{
const SICD& sicd = this->segmentSet()[seg].spiralICD();
const int seg_upwind = upwinding_segments_[seg];
const std::vector& phase_fractions = segment_phase_fractions_[seg_upwind];
const std::vector& phase_viscosities = segment_phase_viscosities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
}
EvalWell density = segment_densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
water_fraction.clearDerivatives();
water_viscosity.clearDerivatives();
oil_fraction.clearDerivatives();
oil_viscosity.clearDerivatives();
gas_fraction.clearDerivatives();
gas_viscosity.clearDerivatives();
density.clearDerivatives();
}
const EvalWell liquid_fraction = water_fraction + oil_fraction;
// viscosity contribution from the liquid
const EvalWell liquid_viscosity_fraction = liquid_fraction < 1.e-30 ? oil_fraction * oil_viscosity + water_fraction * water_viscosity :
liquid_fraction * mswellhelpers::emulsionViscosity(water_fraction, water_viscosity, oil_fraction, oil_viscosity, sicd);
const EvalWell mixture_viscosity = liquid_viscosity_fraction + gas_fraction * gas_viscosity;
const EvalWell reservoir_rate = segment_mass_rates_[seg] / density;
const EvalWell reservoir_rate_icd = reservoir_rate * sicd.scalingFactor();
const double viscosity_cali = sicd.viscosityCalibration();
using MathTool = MathToolbox;
const double density_cali = sicd.densityCalibration();
const EvalWell temp_value1 = MathTool::pow(density / density_cali, 0.75);
const EvalWell temp_value2 = MathTool::pow(mixture_viscosity / viscosity_cali, 0.25);
// formulation before 2016, base_strength is used
// const double base_strength = sicd.strength() / density_cali;
// formulation since 2016, strength is used instead
const double strength = sicd.strength();
const double sign = reservoir_rate_icd <= 0. ? 1.0 : -1.0;
return sign * temp_value1 * temp_value2 * strength * reservoir_rate_icd * reservoir_rate_icd;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
pressureDropAutoICD(const int seg,
const UnitSystem& unit_system) const
{
const AutoICD& aicd = this->segmentSet()[seg].autoICD();
const int seg_upwind = this->upwinding_segments_[seg];
const std::vector& phase_fractions = this->segment_phase_fractions_[seg_upwind];
const std::vector& phase_viscosities = this->segment_phase_viscosities_[seg_upwind];
const std::vector& phase_densities = this->segment_phase_densities_[seg_upwind];
EvalWell water_fraction = 0.;
EvalWell water_viscosity = 0.;
EvalWell water_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
water_fraction = phase_fractions[water_pos];
water_viscosity = phase_viscosities[water_pos];
water_density = phase_densities[water_pos];
}
EvalWell oil_fraction = 0.;
EvalWell oil_viscosity = 0.;
EvalWell oil_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const int oil_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
oil_fraction = phase_fractions[oil_pos];
oil_viscosity = phase_viscosities[oil_pos];
oil_density = phase_densities[oil_pos];
}
EvalWell gas_fraction = 0.;
EvalWell gas_viscosity = 0.;
EvalWell gas_density = 0.;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
gas_fraction = phase_fractions[gas_pos];
gas_viscosity = phase_viscosities[gas_pos];
gas_density = phase_densities[gas_pos];
}
EvalWell density = segment_densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
water_fraction.clearDerivatives();
water_viscosity.clearDerivatives();
water_density.clearDerivatives();
oil_fraction.clearDerivatives();
oil_viscosity.clearDerivatives();
oil_density.clearDerivatives();
gas_fraction.clearDerivatives();
gas_viscosity.clearDerivatives();
gas_density.clearDerivatives();
density.clearDerivatives();
}
using MathTool = MathToolbox;
const EvalWell mixture_viscosity = MathTool::pow(water_fraction, aicd.waterViscExponent()) * water_viscosity
+ MathTool::pow(oil_fraction, aicd.oilViscExponent()) * oil_viscosity
+ MathTool::pow(gas_fraction, aicd.gasViscExponent()) * gas_viscosity;
const EvalWell mixture_density = MathTool::pow(water_fraction, aicd.waterDensityExponent()) * water_density
+ MathTool::pow(oil_fraction, aicd.oilDensityExponent()) * oil_density
+ MathTool::pow(gas_fraction, aicd.gasDensityExponent()) * gas_density;
const double rho_reference = aicd.densityCalibration();
const double visc_reference = aicd.viscosityCalibration();
const auto volume_rate_icd = this->segment_mass_rates_[seg] * aicd.scalingFactor() / mixture_density;
const double sign = volume_rate_icd <= 0. ? 1.0 : -1.0;
// convert 1 unit volume rate
using M = UnitSystem::measure;
const double unit_volume_rate = unit_system.to_si(M::geometric_volume_rate, 1.);
// TODO: we did not consider the maximum allowed rate here
const auto result = sign / rho_reference * mixture_density * mixture_density
* MathTool::pow(visc_reference/mixture_viscosity, aicd.viscExponent())
* aicd.strength() * MathTool::pow( -sign * volume_rate_icd, aicd.flowRateExponent())
* std::pow(unit_volume_rate, (2. - aicd.flowRateExponent())) ;
return result;
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
pressureDropValve(const int seg) const
{
const Valve& valve = this->segmentSet()[seg].valve();
const EvalWell& mass_rate = segment_mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell visc = segment_viscosities_[seg_upwind];
EvalWell density = segment_densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
visc.clearDerivatives();
density.clearDerivatives();
}
const double additional_length = valve.pipeAdditionalLength();
const double roughness = valve.pipeRoughness();
const double diameter = valve.pipeDiameter();
const double area = valve.pipeCrossArea();
const EvalWell friction_pressure_loss =
mswellhelpers::frictionPressureLoss(additional_length, diameter, area, roughness, density, mass_rate, visc);
const double area_con = valve.conCrossArea();
const double cv = valve.conFlowCoefficient();
const EvalWell constriction_pressure_loss =
mswellhelpers::valveContrictionPressureLoss(mass_rate, density, area_con, cv);
const double sign = mass_rate <= 0. ? 1.0 : -1.0;
return sign * (friction_pressure_loss + constriction_pressure_loss);
}
template
typename MultisegmentWellEval::EvalWell
MultisegmentWellEval::
getSegmentSurfaceVolume(const EvalWell& temperature,
const EvalWell& saltConcentration,
const int pvt_region_index,
const int seg_idx) const
{
const EvalWell seg_pressure = getSegmentPressure(seg_idx);
std::vector mix_s(baseif_.numComponents(), 0.0);
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
mix_s[comp_idx] = surfaceVolumeFraction(seg_idx, comp_idx);
}
std::vector b(baseif_.numComponents(), 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
b[waterCompIdx] =
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
saltConcentration);
}
EvalWell rv(0.0);
EvalWell rvw(0.0);
// gas phase
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index,
temperature,
seg_pressure);
if (rvmax < 0.0) { // negative rvmax can happen if the seg_pressure is outside the range of the table
rvmax = 0.0;
}
if (mix_s[oilCompIdx] > 0.0) {
if (mix_s[gasCompIdx] > 0.0) {
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
}
if (rv > rvmax) {
rv = rvmax;
}
b[gasCompIdx] =
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
rv,
rvw);
} else { // no oil exists
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
} else { // no Liquid phase
// it is the same with zero mix_s[Oil]
b[gasCompIdx] =
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
}
EvalWell rs(0.0);
// oil phase
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index,
temperature,
seg_pressure);
if (rsmax < 0.0) { // negative rsmax can happen if the seg_pressure is outside the range of the table
rsmax = 0.0;
}
if (mix_s[gasCompIdx] > 0.0) {
if (mix_s[oilCompIdx] > 0.0) {
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
}
// std::cout << " rs " << rs.value() << " rsmax " << rsmax.value() << std::endl;
if (rs > rsmax) {
rs = rsmax;
}
b[oilCompIdx] =
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure,
rs);
} else { // no oil exists
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
} else { // no gas phase
// it is the same with zero mix_s[Gas]
b[oilCompIdx] =
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index,
temperature,
seg_pressure);
}
}
std::vector mix(mix_s);
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
const EvalWell d = 1.0 - rs * rv;
if (d <= 0.0 || d > 1.0) {
std::ostringstream sstr;
sstr << "Problematic d value " << d << " obtained for well " << baseif_.name()
<< " during conversion to surface volume with rs " << rs
<< ", rv " << rv << " and pressure " << seg_pressure
<< " obtaining d " << d
<< " Continue as if no dissolution (rs = 0) and vaporization (rv = 0) "
<< " for this connection.";
OpmLog::debug(sstr.str());
} else {
if (rs > 0.0) {
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / d;
}
if (rv > 0.0) {
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / d;
}
}
}
EvalWell vol_ratio(0.0);
for (int comp_idx = 0; comp_idx < baseif_.numComponents(); ++comp_idx) {
vol_ratio += mix[comp_idx] / b[comp_idx];
}
// We increase the segment volume with a factor 10 to stabilize the system.
const double volume = this->segmentSet()[seg_idx].volume();
return volume / vol_ratio;
}
template
void
MultisegmentWellEval::
handleAccelerationPressureLoss(const int seg,
WellState& well_state)
{
const double area = this->segmentSet()[seg].crossArea();
const EvalWell mass_rate = segment_mass_rates_[seg];
const int seg_upwind = upwinding_segments_[seg];
EvalWell density = segment_densities_[seg_upwind];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (seg != seg_upwind) {
density.clearDerivatives();
}
EvalWell accelerationPressureLoss = mswellhelpers::velocityHead(area, mass_rate, density);
// handling the velocity head of intlet segments
for (const int inlet : this->segment_inlets_[seg]) {
const int seg_upwind_inlet = upwinding_segments_[inlet];
const double inlet_area = this->segmentSet()[inlet].crossArea();
EvalWell inlet_density = this->segment_densities_[seg_upwind_inlet];
// WARNING
// We disregard the derivatives from the upwind density to make sure derivatives
// wrt. to different segments dont get mixed.
if (inlet != seg_upwind_inlet) {
inlet_density.clearDerivatives();
}
const EvalWell inlet_mass_rate = segment_mass_rates_[inlet];
accelerationPressureLoss -= mswellhelpers::velocityHead(std::max(inlet_area, area), inlet_mass_rate, inlet_density);
}
// We change the sign of the accelerationPressureLoss for injectors.
// Is this correct? Testing indicates that this is what the reference simulator does
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
accelerationPressureLoss *= sign;
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
segments.pressure_drop_accel[seg] = accelerationPressureLoss.value();
MultisegmentWellAssemble(baseif_).
assemblePressureLoss(seg, seg_upwind, accelerationPressureLoss, linSys_);
}
template
void
MultisegmentWellEval::
assembleDefaultPressureEq(const int seg,
WellState& well_state)
{
assert(seg != 0); // not top segment
// for top segment, the well control equation will be used.
EvalWell pressure_equation = getSegmentPressure(seg);
// we need to handle the pressure difference between the two segments
// we only consider the hydrostatic pressure loss first
// TODO: we might be able to add member variables to store these values, then we update well state
// after converged
const auto hydro_pressure_drop = getHydroPressureLoss(seg);
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop.value();
pressure_equation -= hydro_pressure_drop;
if (this->frictionalPressureLossConsidered()) {
const auto friction_pressure_drop = getFrictionPressureLoss(seg);
pressure_equation -= friction_pressure_drop;
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
}
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
const int seg_upwind = upwinding_segments_[seg];
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure, linSys_);
if (this->accelerationalPressureLossConsidered()) {
handleAccelerationPressureLoss(seg, well_state);
}
}
template
void
MultisegmentWellEval::
updateWellStateFromPrimaryVariables(WellState& well_state,
const double rho,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = BlackoilPhases::Vapour;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Water = BlackoilPhases::Aqua;
const auto pvtReg = std::max(this->baseif_.wellEcl().pvt_table_number() - 1, 0);
const PhaseUsage& pu = baseif_.phaseUsage();
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
const int oil_pos = pu.phase_pos[Oil];
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
auto& segment_rates = segments.rates;
auto& disgas = segments.dissolved_gas_rate;
auto& vapoil = segments.vaporized_oil_rate;
auto& segment_pressure = segments.pressure;
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
std::vector fractions(baseif_.numPhases(), 0.0);
fractions[oil_pos] = 1.0;
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
const int water_pos = pu.phase_pos[Water];
fractions[water_pos] = primary_variables_[seg][WFrac];
fractions[oil_pos] -= fractions[water_pos];
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
const int gas_pos = pu.phase_pos[Gas];
fractions[gas_pos] = primary_variables_[seg][GFrac];
fractions[oil_pos] -= fractions[gas_pos];
}
// convert the fractions to be Q_p / G_total to calculate the phase rates
for (int p = 0; p < baseif_.numPhases(); ++p) {
const double scale = baseif_.scalingFactor(p);
// for injection wells, there should only one non-zero scaling factor
if (scale > 0.) {
fractions[p] /= scale;
} else {
// this should only happens to injection wells
fractions[p] = 0.;
}
}
// calculate the phase rates based on the primary variables
const double g_total = primary_variables_[seg][WQTotal];
for (int p = 0; p < baseif_.numPhases(); ++p) {
const double phase_rate = g_total * fractions[p];
segment_rates[seg*baseif_.numPhases() + p] = phase_rate;
if (seg == 0) { // top segment
ws.surface_rates[p] = phase_rate;
}
}
// update the segment pressure
segment_pressure[seg] = primary_variables_[seg][SPres];
if (seg == 0) { // top segment
ws.bhp = segment_pressure[seg];
}
// Calculate other per-phase dynamic quantities.
const auto temperature = 0.0; // Ignore thermal effects
const auto saltConc = 0.0; // Ignore salt precipitation
const auto Rvw = 0.0; // Ignore vaporised water.
auto rsMax = 0.0;
auto rvMax = 0.0;
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
// Both oil and gas active.
rsMax = FluidSystem::oilPvt()
.saturatedGasDissolutionFactor(pvtReg, temperature, segment_pressure[seg]);
rvMax = FluidSystem::gasPvt()
.saturatedOilVaporizationFactor(pvtReg, temperature, segment_pressure[seg]);
}
// 1) Infer phase splitting for oil/gas.
const auto& [Rs, Rv] = this->baseif_.rateConverter().inferDissolvedVaporisedRatio
(rsMax, rvMax, segment_rates.begin() + (seg + 0)*this->baseif_.numPhases());
if (! FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
vapoil[seg] = disgas[seg] = 0.0;
}
else {
const auto* qs = &segment_rates[seg*this->baseif_.numPhases() + 0];
const auto denom = 1.0 - (Rs * Rv);
const auto io = pu.phase_pos[Oil];
const auto ig = pu.phase_pos[Gas];
disgas[seg] = Rs * (qs[io] - Rv*qs[ig]) / denom;
vapoil[seg] = Rv * (qs[ig] - Rs*qs[io]) / denom;
}
// 2) Local condition volume flow rates
{
// Use std::span<> in C++20 and beyond.
const auto rate_start = (seg + 0) * this->baseif_.numPhases();
const auto* surf_rates = segment_rates.data() + rate_start;
auto* resv_rates = segments.phase_resv_rates.data() + rate_start;
this->baseif_.rateConverter().calcReservoirVoidageRates
(pvtReg, segment_pressure[seg],
std::max(0.0, Rs),
std::max(0.0, Rv),
temperature, saltConc, surf_rates, resv_rates);
}
// 3) Local condition holdup fractions.
const auto tot_resv =
std::accumulate(segments.phase_resv_rates.begin() + (seg + 0)*this->baseif_.numPhases(),
segments.phase_resv_rates.begin() + (seg + 1)*this->baseif_.numPhases(),
0.0);
std::transform(segments.phase_resv_rates.begin() + (seg + 0)*this->baseif_.numPhases(),
segments.phase_resv_rates.begin() + (seg + 1)*this->baseif_.numPhases(),
segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(),
[tot_resv](const auto qr) { return std::clamp(qr / tot_resv, 0.0, 1.0); });
// 4) Local condition flow velocities for segments other than top segment.
if (seg > 0) {
// Possibly poor approximation
// Velocity = Flow rate / cross-sectional area.
// Additionally ignores drift flux.
const auto area = this->baseif_.wellEcl().getSegments()
.getFromSegmentNumber(segments.segment_number()[seg]).crossArea();
const auto velocity = (area > 0.0) ? tot_resv / area : 0.0;
std::transform(segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(),
segments.phase_holdup.begin() + (seg + 1)*this->baseif_.numPhases(),
segments.phase_velocity.begin() + (seg + 0)*this->baseif_.numPhases(),
[velocity](const auto hf) { return (hf > 0.0) ? velocity : 0.0; });
}
// 5) Local condition phase viscosities.
segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Oil]] =
FluidSystem::oilPvt().viscosity(pvtReg, temperature, segment_pressure[seg], Rs);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Water]] =
FluidSystem::waterPvt().viscosity(pvtReg, temperature, segment_pressure[seg], saltConc);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
segments.phase_viscosity[seg*this->baseif_.numPhases() + pu.phase_pos[Gas]] =
FluidSystem::gasPvt().viscosity(pvtReg, temperature, segment_pressure[seg], Rv, Rvw);
}
}
// Segment flow velocity in top segment.
{
const auto np = this->baseif_.numPhases();
auto segVel = [&segments, np](const auto segmentNumber)
{
auto v = 0.0;
const auto* vel = segments.phase_velocity.data() + segmentNumber*np;
for (auto p = 0*np; p < np; ++p) {
if (std::abs(vel[p]) > std::abs(v)) {
v = vel[p];
}
}
return v;
};
const auto seg = 0;
auto maxVel = 0.0;
for (const auto& inlet : this->segmentSet()[seg].inletSegments()) {
const auto v = segVel(this->segmentNumberToIndex(inlet));
if (std::abs(v) > std::abs(maxVel)) {
maxVel = v;
}
}
std::transform(segments.phase_holdup.begin() + (seg + 0)*this->baseif_.numPhases(),
segments.phase_holdup.begin() + (seg + 1)*this->baseif_.numPhases(),
segments.phase_velocity.begin() + (seg + 0)*this->baseif_.numPhases(),
[maxVel](const auto hf) { return (hf > 0.0) ? maxVel : 0.0; });
}
WellBhpThpCalculator(this->baseif_)
.updateThp(rho, [this]() { return this->baseif_.wellEcl().alq_value(); },
{FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)},
well_state, deferred_logger);
}
template
void
MultisegmentWellEval::
assembleICDPressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
// TODO: upwinding needs to be taken care of
// top segment can not be a spiral ICD device
assert(seg != 0);
if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
MultisegmentWellAssemble(baseif_).
assembleTrivialEq(seg, this->primary_variables_evaluation_[seg][WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.;
return;
}
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
EvalWell pressure_equation = getSegmentPressure(seg);
EvalWell icd_pressure_drop;
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
icd_pressure_drop = pressureDropSpiralICD(seg);
break;
case Segment::SegmentType::AICD :
icd_pressure_drop = pressureDropAutoICD(seg, unit_system);
break;
case Segment::SegmentType::VALVE :
icd_pressure_drop = pressureDropValve(seg);
break;
default: {
OPM_DEFLOG_THROW(std::runtime_error, "Segment " + std::to_string(this->segmentSet()[seg].segmentNumber())
+ " for well " + baseif_.name() + " is not of ICD type", deferred_logger);
}
}
pressure_equation = pressure_equation - icd_pressure_drop;
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
const int seg_upwind = upwinding_segments_[seg];
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure,
linSys_,
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
}
template
void
MultisegmentWellEval::
assemblePressureEq(const int seg,
const UnitSystem& unit_system,
WellState& well_state,
DeferredLogger& deferred_logger)
{
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
case Segment::SegmentType::AICD :
case Segment::SegmentType::VALVE : {
assembleICDPressureEq(seg, unit_system, well_state,deferred_logger);
break;
}
default :
assembleDefaultPressureEq(seg, well_state);
}
}
template
std::pair >
MultisegmentWellEval::
getFiniteWellResiduals(const std::vector& B_avg,
DeferredLogger& deferred_logger) const
{
assert(int(B_avg.size() ) == baseif_.numComponents());
std::vector residuals(numWellEq + 1, 0.0);
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
double residual = 0.;
if (eq_idx < baseif_.numComponents()) {
residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
residual = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
deferred_logger.debug("nan or inf value for residal get for well " + baseif_.name()
+ " segment " + std::to_string(seg) + " eq_idx " + std::to_string(eq_idx));
return {false, residuals};
}
if (residual > residuals[eq_idx]) {
residuals[eq_idx] = residual;
}
}
}
// handling the control equation residual
{
const double control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug("nan or inf value for control residal get for well " + baseif_.name());
return {false, residuals};
}
residuals[numWellEq] = control_residual;
}
return {true, residuals};
}
template
double
MultisegmentWellEval::
getControlTolerance(const WellState& well_state,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
double control_tolerance = 0.;
const int well_index = baseif_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (baseif_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
control_tolerance = tolerance_pressure_ms_wells;
break;
case Well::InjectorCMode::BHP:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::GRUP:
control_tolerance = tolerance_wells;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
if (baseif_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
control_tolerance = tolerance_wells; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger);
}
}
return control_tolerance;
}
template
double
MultisegmentWellEval::
getResidualMeasureValue(const WellState& well_state,
const std::vector& residuals,
const double tolerance_wells,
const double tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
assert(int(residuals.size()) == numWellEq + 1);
const double rate_tolerance = tolerance_wells;
int count = 0;
double sum = 0;
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
if (residuals[eq_idx] > rate_tolerance) {
sum += residuals[eq_idx] / rate_tolerance;
++count;
}
}
const double pressure_tolerance = tolerance_pressure_ms_wells;
if (residuals[SPres] > pressure_tolerance) {
sum += residuals[SPres] / pressure_tolerance;
++count;
}
const double control_tolerance = getControlTolerance(well_state,
tolerance_wells,
tolerance_pressure_ms_wells,
deferred_logger);
if (residuals[SPres + 1] > control_tolerance) {
sum += residuals[SPres + 1] / control_tolerance;
++count;
}
// if (count == 0), it should be converged.
assert(count != 0);
return sum;
}
template
void
MultisegmentWellEval::
updateUpwindingSegments()
{
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
// special treatment is needed for segment 0
if (seg == 0) {
// we are not supposed to have injecting producers and producing injectors
assert( ! (baseif_.isProducer() && primary_variables_evaluation_[seg][WQTotal] > 0.) );
assert( ! (baseif_.isInjector() && primary_variables_evaluation_[seg][WQTotal] < 0.) );
upwinding_segments_[seg] = seg;
continue;
}
// for other normal segments
if (primary_variables_evaluation_[seg][WQTotal] <= 0.) {
upwinding_segments_[seg] = seg;
} else {
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
upwinding_segments_[seg] = outlet_segment_index;
}
}
}
#define INSTANCE(...) \
template class MultisegmentWellEval,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
} // namespace Opm