/* Copyright 2016 SINTEF ICT, Applied Mathematics. Copyright 2016 Statoil ASA. Copyright 2020 OPM-OP AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_WELLHELPERS_HEADER_INCLUDED #define OPM_WELLHELPERS_HEADER_INCLUDED #include #include #include #include #include #include #include namespace Opm { namespace wellhelpers { /// \brief A wrapper around the B matrix for distributed wells /// /// For standard wells the B matrix, is basically a multiplication /// of the equation of the perforated cells followed by a reduction /// (summation) of these to the well equations. /// /// This class does that in the functions mv and mmv (from the DUNE /// matrix interface. /// /// \tparam Scalar The scalar used for the computation. template class ParallelStandardWellB { public: using Block = Dune::DynamicMatrix; using Matrix = Dune::BCRSMatrix; ParallelStandardWellB(const Matrix& B, const ParallelWellInfo& parallel_well_info) : B_(&B), parallel_well_info_(¶llel_well_info) {} //! y = A x template void mv (const X& x, Y& y) const { #if !defined(NDEBUG) && HAVE_MPI // We need to make sure that all ranks are actually computing // for the same well. Doing this by checking the name of the well. int cstring_size = parallel_well_info_->name().size()+1; std::vector sizes(parallel_well_info_->communication().size()); parallel_well_info_->communication().allgather(&cstring_size, 1, sizes.data()); std::vector offsets(sizes.size()+1, 0); //last entry will be accumulated size std::partial_sum(sizes.begin(), sizes.end(), offsets.begin() + 1); std::vector cstrings(offsets[sizes.size()]); bool consistentWells = true; char* send = const_cast(parallel_well_info_->name().c_str()); parallel_well_info_->communication().allgatherv(send, cstring_size, cstrings.data(), sizes.data(), offsets.data()); for(std::size_t i = 0; i < sizes.size(); ++i) { std::string name(cstrings.data()+offsets[i]); if (name != parallel_well_info_->name()) { if (parallel_well_info_->communication().rank() == 0) { //only one process per well logs, might not be 0 of MPI_COMM_WORLD, though std::string msg = std::string("Fatal Error: Not all ranks are computing for the same well") + " well should be " + parallel_well_info_->name() + " but is " + name; OpmLog::debug(msg); } consistentWells = false; break; } } parallel_well_info_->communication().barrier(); // As not all processes are involved here we need to use MPI_Abort and hope MPI kills them all if (!consistentWells) { MPI_Abort(MPI_COMM_WORLD, 1); } #endif B_->mv(x, y); if (this->parallel_well_info_->communication().size() > 1) { // Only do communication if we must. // The B matrix is basically a component-wise multiplication // with a vector followed by a parallel reduction. We do that // reduction to all ranks computing for the well to save the // broadcast when applying C^T. using YField = typename Y::block_type::value_type; assert(y.size() == 1); this->parallel_well_info_->communication().template allreduce>(y[0].container().data(), y[0].container().size()); } } //! y = A x template void mmv (const X& x, Y& y) const { if (this->parallel_well_info_->communication().size() == 1) { // Do the same thing as before. The else branch // produces different rounding errors and results // slightly different iteration counts / well curves B_->mmv(x, y); } else { Y temp(y); mv(x, temp); // includes parallel reduction y -= temp; } } private: const Matrix* B_; const ParallelWellInfo* parallel_well_info_; }; inline double computeHydrostaticCorrection(const double well_ref_depth, const double vfp_ref_depth, const double rho, const double gravity) { const double dh = vfp_ref_depth - well_ref_depth; const double dp = rho * gravity * dh; return dp; } /// \brief Sums entries of the diagonal Matrix for distributed wells template void sumDistributedWellEntries(Dune::DynamicMatrix& mat, Dune::DynamicVector& vec, const Comm& comm) { // DynamicMatrix does not use one contiguous array for storing the data // but a DynamicVector of DynamicVectors. Hence we need to copy the data // to contiguous memory for MPI. if (comm.size() == 1) { return; } std::vector allEntries; allEntries.reserve(mat.N()*mat.M()+vec.size()); for(const auto& row: mat) { allEntries.insert(allEntries.end(), row.begin(), row.end()); } allEntries.insert(allEntries.end(), vec.begin(), vec.end()); comm.sum(allEntries.data(), allEntries.size()); auto pos = allEntries.begin(); auto cols = mat.cols(); for(auto&& row: mat) { std::copy(pos, pos + cols, &(row[0])); pos += cols; } assert(std::size_t(allEntries.end() - pos) == vec.size()); std::copy(pos, allEntries.end(), &(vec[0])); } template std::array getCubeDim(const C2F& c2f, FC begin_face_centroids, int cell) { std::array< std::vector, dim > X; { const std::vector::size_type nf = std::distance(c2f[cell].begin(), c2f[cell].end ()); for (int d = 0; d < dim; ++d) { X[d].reserve(nf); } } typedef typename C2F::row_type::const_iterator FI; for (FI f = c2f[cell].begin(), e = c2f[cell].end(); f != e; ++f) { using Opm::UgGridHelpers::increment; using Opm::UgGridHelpers::getCoordinate; const FC& fc = increment(begin_face_centroids, *f, dim); for (int d = 0; d < dim; ++d) { X[d].push_back(getCoordinate(fc, d)); } } std::array cube; for (int d = 0; d < dim; ++d) { typedef std::vector::iterator VI; typedef std::pair PVI; const PVI m = std::minmax_element(X[d].begin(), X[d].end()); cube[d] = *m.second - *m.first; } return cube; } // explicite transpose of dense matrix due to compilation problems // used for caclulating quasiimpes well weights template DenseMatrix transposeDenseDynMatrix(const DenseMatrix& M) { DenseMatrix tmp{M.cols(), M.rows()}; for (size_t i = 0; i < M.rows(); ++i) { for (size_t j = 0; j < M.cols(); ++j) { tmp[j][i] = M[i][j]; } } return tmp; } } // namespace wellhelpers } #endif