/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { /// Construct solver. TofDiscGalReorder::TofDiscGalReorder(const UnstructuredGrid& grid, const parameter::ParameterGroup& param) : grid_(grid), use_cvi_(false), use_limiter_(false), limiter_relative_flux_threshold_(1e-3), limiter_method_(MinUpwindAverage), limiter_usage_(DuringComputations), coord_(grid.dimensions), velocity_(grid.dimensions) { const int dg_degree = param.getDefault("dg_degree", 0); const bool use_tensorial_basis = param.getDefault("use_tensorial_basis", false); if (use_tensorial_basis) { basis_func_.reset(new DGBasisMultilin(grid_, dg_degree)); } else { basis_func_.reset(new DGBasisBoundedTotalDegree(grid_, dg_degree)); } use_cvi_ = param.getDefault("use_cvi", use_cvi_); use_limiter_ = param.getDefault("use_limiter", use_limiter_); if (use_limiter_) { limiter_relative_flux_threshold_ = param.getDefault("limiter_relative_flux_threshold", limiter_relative_flux_threshold_); const std::string limiter_method_str = param.getDefault("limiter_method", "MinUpwindAverage"); if (limiter_method_str == "MinUpwindFace") { limiter_method_ = MinUpwindFace; } else if (limiter_method_str == "MinUpwindAverage") { limiter_method_ = MinUpwindAverage; } else { THROW("Unknown limiter method: " << limiter_method_str); } const std::string limiter_usage_str = param.getDefault("limiter_usage", "DuringComputations"); if (limiter_usage_str == "DuringComputations") { limiter_usage_ = DuringComputations; } else if (limiter_usage_str == "AsPostProcess") { limiter_usage_ = AsPostProcess; } else if (limiter_usage_str == "AsSimultaneousPostProcess") { limiter_usage_ = AsSimultaneousPostProcess; } else { THROW("Unknown limiter usage spec: " << limiter_usage_str); } } // A note about the use_cvi_ member variable: // In principle, we should not need it, since the choice of velocity // interpolation is made below, but we may need to use higher order // quadrature to exploit CVI, so we store the choice. // An alternative would be to add a virtual method isConstant() to // the VelocityInterpolationInterface. if (use_cvi_) { velocity_interpolation_.reset(new VelocityInterpolationECVI(grid_)); } else { velocity_interpolation_.reset(new VelocityInterpolationConstant(grid_)); } } /// Solve for time-of-flight. void TofDiscGalReorder::solveTof(const double* darcyflux, const double* porevolume, const double* source, std::vector& tof_coeff) { darcyflux_ = darcyflux; porevolume_ = porevolume; source_ = source; #ifndef NDEBUG // Sanity check for sources. const double cum_src = std::accumulate(source, source + grid_.number_of_cells, 0.0); if (std::fabs(cum_src) > *std::max_element(source, source + grid_.number_of_cells)*1e-2) { // THROW("Sources do not sum to zero: " << cum_src); MESSAGE("Warning: sources do not sum to zero: " << cum_src); } #endif const int num_basis = basis_func_->numBasisFunc(); tof_coeff.resize(num_basis*grid_.number_of_cells); std::fill(tof_coeff.begin(), tof_coeff.end(), 0.0); tof_coeff_ = &tof_coeff[0]; rhs_.resize(num_basis); jac_.resize(num_basis*num_basis); orig_jac_.resize(num_basis*num_basis); basis_.resize(num_basis); basis_nb_.resize(num_basis); grad_basis_.resize(num_basis*grid_.dimensions); velocity_interpolation_->setupFluxes(darcyflux); reorderAndTransport(grid_, darcyflux); switch (limiter_usage_) { case AsPostProcess: applyLimiterAsPostProcess(); break; case AsSimultaneousPostProcess: applyLimiterAsSimultaneousPostProcess(); break; case DuringComputations: // Do nothing. break; default: THROW("Unknown limiter usage choice: " << limiter_usage_); } } void TofDiscGalReorder::solveSingleCell(const int cell) { // Residual: // For each cell K, basis function b_j (spanning V_h), // writing the solution u_h|K = \sum_i c_i b_i // Res = - \int_K \sum_i c_i b_i v(x) \cdot \grad b_j dx // + \int_{\partial K} F(u_h, u_h^{ext}, v(x) \cdot n) b_j ds // - \int_K \phi b_j // This is linear in c_i, so we do not need any nonlinear iterations. // We assemble the jacobian and the right-hand side. The residual is // equal to Res = Jac*c - rhs, and we compute rhs directly. const int dim = grid_.dimensions; const int num_basis = basis_func_->numBasisFunc(); std::fill(rhs_.begin(), rhs_.end(), 0.0); std::fill(jac_.begin(), jac_.end(), 0.0); // Compute cell residual contribution. { const int deg_needed = basis_func_->degree(); CellQuadrature quad(grid_, cell, deg_needed); for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) { // Integral of: b_i \phi quad.quadPtCoord(quad_pt, &coord_[0]); basis_func_->eval(cell, &coord_[0], &basis_[0]); const double w = quad.quadPtWeight(quad_pt); for (int j = 0; j < num_basis; ++j) { rhs_[j] += w * basis_[j] * porevolume_[cell] / grid_.cell_volumes[cell]; } } } // Compute upstream residual contribution. for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) { const int face = grid_.cell_faces[hface]; double flux = 0.0; int upstream_cell = -1; if (cell == grid_.face_cells[2*face]) { flux = darcyflux_[face]; upstream_cell = grid_.face_cells[2*face+1]; } else { flux = -darcyflux_[face]; upstream_cell = grid_.face_cells[2*face]; } if (flux >= 0.0) { // This is an outflow boundary. continue; } if (upstream_cell < 0) { // This is an outer boundary. Assumed tof = 0 on inflow, so no contribution. continue; } // Do quadrature over the face to compute // \int_{\partial K} u_h^{ext} (v(x) \cdot n) b_j ds // (where u_h^{ext} is the upstream unknown (tof)). // Quadrature degree set to 2*D, since u_h^{ext} varies // with degree D, and b_j too. We assume that the normal // velocity is constant (this assumption may have to go // for higher order than DG1). const double normal_velocity = flux / grid_.face_areas[face]; const int deg_needed = 2*basis_func_->degree(); FaceQuadrature quad(grid_, face, deg_needed); for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) { quad.quadPtCoord(quad_pt, &coord_[0]); basis_func_->eval(cell, &coord_[0], &basis_[0]); basis_func_->eval(upstream_cell, &coord_[0], &basis_nb_[0]); const double tof_upstream = std::inner_product(basis_nb_.begin(), basis_nb_.end(), tof_coeff_ + num_basis*upstream_cell, 0.0); const double w = quad.quadPtWeight(quad_pt); for (int j = 0; j < num_basis; ++j) { rhs_[j] -= w * tof_upstream * normal_velocity * basis_[j]; } } } // Compute cell jacobian contribution. We use Fortran ordering // for jac_, i.e. rows cycling fastest. { // Even with ECVI velocity interpolation, degree of precision 1 // is sufficient for optimal convergence order for DG1 when we // use linear (total degree 1) basis functions. // With bi(tri)-linear basis functions, it still seems sufficient // for convergence order 2, but the solution looks much better and // has significantly lower error with degree of precision 2. // For now, we err on the side of caution, and use 2*degree, even // though this is wasteful for the pure linear basis functions. // const int deg_needed = 2*basis_func_->degree() - 1; const int deg_needed = 2*basis_func_->degree(); CellQuadrature quad(grid_, cell, deg_needed); for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) { // b_i (v \cdot \grad b_j) quad.quadPtCoord(quad_pt, &coord_[0]); basis_func_->eval(cell, &coord_[0], &basis_[0]); basis_func_->evalGrad(cell, &coord_[0], &grad_basis_[0]); velocity_interpolation_->interpolate(cell, &coord_[0], &velocity_[0]); const double w = quad.quadPtWeight(quad_pt); for (int j = 0; j < num_basis; ++j) { for (int i = 0; i < num_basis; ++i) { for (int dd = 0; dd < dim; ++dd) { jac_[j*num_basis + i] -= w * basis_[j] * grad_basis_[dim*i + dd] * velocity_[dd]; } } } } } // Compute downstream jacobian contribution from faces. for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) { const int face = grid_.cell_faces[hface]; double flux = 0.0; if (cell == grid_.face_cells[2*face]) { flux = darcyflux_[face]; } else { flux = -darcyflux_[face]; } if (flux <= 0.0) { // This is an inflow boundary. continue; } // Do quadrature over the face to compute // \int_{\partial K} b_i (v(x) \cdot n) b_j ds const double normal_velocity = flux / grid_.face_areas[face]; FaceQuadrature quad(grid_, face, 2*basis_func_->degree()); for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) { // u^ext flux B (B = {b_j}) quad.quadPtCoord(quad_pt, &coord_[0]); basis_func_->eval(cell, &coord_[0], &basis_[0]); const double w = quad.quadPtWeight(quad_pt); for (int j = 0; j < num_basis; ++j) { for (int i = 0; i < num_basis; ++i) { jac_[j*num_basis + i] += w * basis_[i] * normal_velocity * basis_[j]; } } } } // Compute downstream jacobian contribution from sink terms. // Contribution from inflow sources would be // similar to the contribution from upstream faces, but // it is zero since we let all external inflow be associated // with a zero tof. if (source_[cell] < 0.0) { // A sink. const double flux = -source_[cell]; // Sign convention for flux: outflux > 0. const double flux_density = flux / grid_.cell_volumes[cell]; // Do quadrature over the cell to compute // \int_{K} b_i flux b_j dx CellQuadrature quad(grid_, cell, 2*basis_func_->degree()); for (int quad_pt = 0; quad_pt < quad.numQuadPts(); ++quad_pt) { quad.quadPtCoord(quad_pt, &coord_[0]); basis_func_->eval(cell, &coord_[0], &basis_[0]); const double w = quad.quadPtWeight(quad_pt); for (int j = 0; j < num_basis; ++j) { for (int i = 0; i < num_basis; ++i) { jac_[j*num_basis + i] += w * basis_[i] * flux_density * basis_[j]; } } } } // Solve linear equation. MAT_SIZE_T n = num_basis; MAT_SIZE_T nrhs = 1; MAT_SIZE_T lda = num_basis; std::vector piv(num_basis); MAT_SIZE_T ldb = num_basis; MAT_SIZE_T info = 0; orig_jac_ = jac_; orig_rhs_ = rhs_; dgesv_(&n, &nrhs, &jac_[0], &lda, &piv[0], &rhs_[0], &ldb, &info); if (info != 0) { // Print the local matrix and rhs. std::cerr << "Failed solving single-cell system Ax = b in cell " << cell << " with A = \n"; for (int row = 0; row < n; ++row) { for (int col = 0; col < n; ++col) { std::cerr << " " << orig_jac_[row + n*col]; } std::cerr << '\n'; } std::cerr << "and b = \n"; for (int row = 0; row < n; ++row) { std::cerr << " " << orig_rhs_[row] << '\n'; } THROW("Lapack error: " << info << " encountered in cell " << cell); } // The solution ends up in rhs_, so we must copy it. std::copy(rhs_.begin(), rhs_.end(), tof_coeff_ + num_basis*cell); // Apply limiter. if (basis_func_->degree() > 0 && use_limiter_ && limiter_usage_ == DuringComputations) { #ifdef EXTRA_VERBOSE std::cout << "Cell: " << cell << " "; std::cout << "v = "; for (int dd = 0; dd < dim; ++dd) { std::cout << velocity_[dd] << ' '; } std::cout << " grad tau = "; for (int dd = 0; dd < dim; ++dd) { std::cout << tof_coeff_[num_basis*cell + dd + 1] << ' '; } const double prod = std::inner_product(velocity_.begin(), velocity_.end(), tof_coeff_ + num_basis*cell + 1, 0.0); const double vv = std::inner_product(velocity_.begin(), velocity_.end(), velocity_.begin(), 0.0); const double gg = std::inner_product(tof_coeff_ + num_basis*cell + 1, tof_coeff_ + num_basis*cell + num_basis, tof_coeff_ + num_basis*cell + 1, 0.0); std::cout << " prod = " << std::inner_product(velocity_.begin(), velocity_.end(), tof_coeff_ + num_basis*cell + 1, 0.0); std::cout << " normalized = " << prod/std::sqrt(vv*gg); std::cout << " angle = " << std::acos(prod/std::sqrt(vv*gg))*360.0/(2.0*M_PI); std::cout << std::endl; #endif applyLimiter(cell, tof_coeff_); } } void TofDiscGalReorder::solveMultiCell(const int num_cells, const int* cells) { std::cout << "Pretending to solve multi-cell dependent equation with " << num_cells << " cells." << std::endl; for (int i = 0; i < num_cells; ++i) { solveSingleCell(cells[i]); } } void TofDiscGalReorder::applyLimiter(const int cell, double* tof) { switch (limiter_method_) { case MinUpwindFace: applyMinUpwindLimiter(cell, true, tof); break; case MinUpwindAverage: applyMinUpwindLimiter(cell, false, tof); break; default: THROW("Limiter type not implemented: " << limiter_method_); } } void TofDiscGalReorder::applyMinUpwindLimiter(const int cell, const bool face_min, double* tof) { if (basis_func_->degree() != 1) { THROW("This limiter only makes sense for our DG1 implementation."); } // Limiter principles: // 1. Let M be either: // - the minimum TOF value of all upstream faces, // evaluated in the upstream cells // (chosen if face_min is true). // or: // - the minimum average TOF value of all upstream cells // (chosen if face_min is false). // Then the value at all points in this cell shall be at // least M. Upstream faces whose flux does not exceed the // relative flux threshold are not considered for this // minimum. // 2. The TOF shall not be below zero in any point. // Find minimum tof on upstream faces/cells and for this cell. const int num_basis = basis_func_->numBasisFunc(); double min_upstream_tof = 1e100; double min_here_tof = 1e100; int num_upstream_faces = 0; const double total_flux = totalFlux(cell); for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) { const int face = grid_.cell_faces[hface]; double flux = 0.0; int upstream_cell = -1; if (cell == grid_.face_cells[2*face]) { flux = darcyflux_[face]; upstream_cell = grid_.face_cells[2*face+1]; } else { flux = -darcyflux_[face]; upstream_cell = grid_.face_cells[2*face]; } const bool upstream = (flux < -total_flux*limiter_relative_flux_threshold_); const bool interior = (upstream_cell >= 0); // Find minimum tof in this cell and upstream. // The meaning of minimum upstream tof depends on method. min_here_tof = std::min(min_here_tof, minCornerVal(cell, face)); if (upstream) { ++num_upstream_faces; double upstream_tof = 0.0; if (interior) { if (face_min) { upstream_tof = minCornerVal(upstream_cell, face); } else { upstream_tof = basis_func_->functionAverage(tof_coeff_ + num_basis*upstream_cell); } } min_upstream_tof = std::min(min_upstream_tof, upstream_tof); } } // Compute slope multiplier (limiter). if (num_upstream_faces == 0) { min_upstream_tof = 0.0; min_here_tof = 0.0; } if (min_upstream_tof < 0.0) { min_upstream_tof = 0.0; } const double tof_c = basis_func_->functionAverage(tof_coeff_ + num_basis*cell); double limiter = (tof_c - min_upstream_tof)/(tof_c - min_here_tof); if (tof_c < min_upstream_tof) { // Handle by setting a flat solution. std::cout << "Trouble in cell " << cell << std::endl; limiter = 0.0; basis_func_->addConstant(min_upstream_tof - tof_c, tof + num_basis*cell); } ASSERT(limiter >= 0.0); // Actually do the limiting (if applicable). if (limiter < 1.0) { // std::cout << "Applying limiter in cell " << cell << ", limiter = " << limiter << std::endl; basis_func_->multiplyGradient(limiter, tof + num_basis*cell); } else { // std::cout << "Not applying limiter in cell " << cell << "!" << std::endl; } } void TofDiscGalReorder::applyLimiterAsPostProcess() { // Apply the limiter sequentially to all cells. // This means that a cell's limiting behaviour may be affected by // any limiting applied to its upstream cells. const std::vector& seq = ReorderSolverInterface::sequence(); const int nc = seq.size(); ASSERT(nc == grid_.number_of_cells); for (int i = 0; i < nc; ++i) { const int cell = seq[i]; applyLimiter(cell, tof_coeff_); } } void TofDiscGalReorder::applyLimiterAsSimultaneousPostProcess() { // Apply the limiter simultaneously to all cells. // This means that each cell is limited independently from all other cells, // we write the resulting dofs to a new array instead of writing to tof_coeff_. // Afterwards we copy the results back to tof_coeff_. const int num_basis = basis_func_->numBasisFunc(); std::vector tof_coeffs_new(tof_coeff_, tof_coeff_ + num_basis*grid_.number_of_cells); for (int c = 0; c < grid_.number_of_cells; ++c) { applyLimiter(c, &tof_coeffs_new[0]); } std::copy(tof_coeffs_new.begin(), tof_coeffs_new.end(), tof_coeff_); } double TofDiscGalReorder::totalFlux(const int cell) const { // Find total upstream/downstream fluxes. double upstream_flux = 0.0; double downstream_flux = 0.0; for (int hface = grid_.cell_facepos[cell]; hface < grid_.cell_facepos[cell+1]; ++hface) { const int face = grid_.cell_faces[hface]; double flux = 0.0; if (cell == grid_.face_cells[2*face]) { flux = darcyflux_[face]; } else { flux = -darcyflux_[face]; } if (flux < 0.0) { upstream_flux += flux; } else { downstream_flux += flux; } } // In the presence of sources, significant fluxes may be missing from the computed fluxes, // setting the total flux to the (positive) maximum avoids this: since source is either // inflow or outflow, not both, either upstream_flux or downstream_flux must be correct. return std::max(-upstream_flux, downstream_flux); } double TofDiscGalReorder::minCornerVal(const int cell, const int face) const { // Evaluate the solution in all corners. const int dim = grid_.dimensions; const int num_basis = basis_func_->numBasisFunc(); double min_cornerval = 1e100; for (int fnode = grid_.face_nodepos[face]; fnode < grid_.face_nodepos[face+1]; ++fnode) { const double* nc = grid_.node_coordinates + dim*grid_.face_nodes[fnode]; basis_func_->eval(cell, nc, &basis_[0]); const double tof_corner = std::inner_product(basis_.begin(), basis_.end(), tof_coeff_ + num_basis*cell, 0.0); min_cornerval = std::min(min_cornerval, tof_corner); } return min_cornerval; } } // namespace Opm