/* Copyright 2015 SINTEF ICT, Applied Mathematics. Copyright 2015 Statoil ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #ifndef OPM_NONLINEARSOLVER_HEADER_INCLUDED #define OPM_NONLINEARSOLVER_HEADER_INCLUDED #include #include #include namespace Opm { /// A nonlinear solver class suitable for general fully-implicit models, /// as well as pressure, transport and sequential models. template class NonlinearSolver { public: // --------- Types and enums --------- typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; // Available relaxation scheme types. enum RelaxType { DAMPEN, SOR }; // Solver parameters controlling nonlinear process. struct SolverParameters { enum RelaxType relax_type_; double relax_max_; double relax_increment_; double relax_rel_tol_; int max_iter_; // max nonlinear iterations int min_iter_; // min nonlinear iterations explicit SolverParameters( const parameter::ParameterGroup& param ); SolverParameters(); void reset(); }; // Forwarding types from PhysicalModel. typedef typename PhysicalModel::ReservoirState ReservoirState; typedef typename PhysicalModel::WellState WellState; // --------- Public methods --------- /// Construct solver for a given model. /// /// The model is a std::unique_ptr because the object to which model points to is /// not allowed to be deleted as long as the NonlinearSolver object exists. /// /// \param[in] param parameters controlling nonlinear process /// \param[in, out] model physical simulation model. explicit NonlinearSolver(const SolverParameters& param, std::unique_ptr model); /// Take a single forward step, after which the states will be modified /// according to the physical model. /// \param[in] dt time step size /// \param[in] reservoir_state reservoir state variables /// \param[in] well_state well state variables /// \return number of linear iterations used int step(const double dt, ReservoirState& reservoir_state, WellState& well_state); /// Number of nonlinear solver iterations used in all calls to step(). unsigned int nonlinearIterations() const; /// Number of linear solver iterations used in all calls to step(). unsigned int linearIterations() const; /// Number of nonlinear solver iterations used in the last call to step(). unsigned int nonlinearIterationsLastStep() const; /// Number of linear solver iterations used in the last call to step(). unsigned int linearIterationsLastStep() const; /// Reference to physical model. const PhysicalModel& model() const; /// Mutable reference to physical model. PhysicalModel& model(); /// Detect oscillation or stagnation in a given residual history. void detectOscillations(const std::vector>& residual_history, const int it, bool& oscillate, bool& stagnate) const; /// Apply a stabilization to dx, depending on dxOld and relaxation parameters. void stabilizeNonlinearUpdate(V& dx, V& dxOld, const double omega) const; /// The greatest relaxation factor (i.e. smallest factor) allowed. double relaxMax() const { return param_.relax_max_; } /// The step-change size for the relaxation factor. double relaxIncrement() const { return param_.relax_increment_; } /// The relaxation type (DAMPEN or SOR). enum RelaxType relaxType() const { return param_.relax_type_; } /// The relaxation relative tolerance. double relaxRelTol() const { return param_.relax_rel_tol_; } /// The maximum number of nonlinear iterations allowed. double maxIter() const { return param_.max_iter_; } /// The minimum number of nonlinear iterations allowed. double minIter() const { return param_.min_iter_; } private: // --------- Data members --------- SolverParameters param_; std::unique_ptr model_; unsigned int nonlinearIterations_; unsigned int linearIterations_; unsigned int nonlinearIterationsLast_; unsigned int linearIterationsLast_; }; } // namespace Opm #include "NonlinearSolver_impl.hpp" #endif // OPM_NONLINEARSOLVER_HEADER_INCLUDED