/* Copyright 2015 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include namespace Opm { namespace detail { } //Namespace detail VFPInjProperties::VFPInjProperties() { } VFPInjProperties::VFPInjProperties(const VFPInjTable* table){ m_tables[table->getTableNum()] = table; } VFPInjProperties::VFPInjProperties(const std::map& tables) { for (const auto& table : tables) { m_tables[table.first] = &table.second; } } VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector& table_id, const Wells& wells, const ADB& qs, const ADB& thp_val) const { const int nw = wells.number_of_wells; //Short-hands for water / oil / gas phases //TODO enable support for two-phase. assert(wells.number_of_phases == 3); const ADB& w = subset(qs, Span(nw, 1, BlackoilPhases::Aqua*nw)); const ADB& o = subset(qs, Span(nw, 1, BlackoilPhases::Liquid*nw)); const ADB& g = subset(qs, Span(nw, 1, BlackoilPhases::Vapour*nw)); return bhp(table_id, w, o, g, thp_val); } VFPInjProperties::EvalWell VFPInjProperties::bhp(const int table_id, const EvalWell& aqua, const EvalWell& liquid, const EvalWell& vapour, const double& thp) const { //Get the table const VFPInjTable* table = detail::getTable(m_tables, table_id); EvalWell bhp = 0.0; //Find interpolation variables EvalWell flo = detail::getFlo(aqua, liquid, vapour, table->getFloType()); //Compute the BHP for each well independently if (table != nullptr) { //First, find the values to interpolate between //Value of FLO is negative in OPM for producers, but positive in VFP table auto flo_i = detail::findInterpData(flo.value(), table->getFloAxis()); auto thp_i = detail::findInterpData( thp, table->getTHPAxis()); // assume constant detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i); bhp = bhp_val.dflo * flo; bhp.setValue(bhp_val.value); // thp is assumed constant i.e. } else { bhp.setValue(-1e100); //Signal that this value has not been calculated properly, due to "missing" table } return bhp; } VFPInjProperties::ADB VFPInjProperties::bhp(const std::vector& table_id, const ADB& aqua, const ADB& liquid, const ADB& vapour, const ADB& thp_arg) const { const int nw = thp_arg.size(); std::vector block_pattern = detail::commonBlockPattern(aqua, liquid, vapour, thp_arg); assert(static_cast(table_id.size()) == nw); assert(aqua.size() == nw); assert(liquid.size() == nw); assert(vapour.size() == nw); assert(thp_arg.size() == nw); //Allocate data for bhp's and partial derivatives ADB::V value = ADB::V::Zero(nw); ADB::V dthp = ADB::V::Zero(nw); ADB::V dflo = ADB::V::Zero(nw); //Get the table for each well std::vector well_tables(nw, nullptr); for (int i=0; i 0) { well_tables[i] = detail::getTable(m_tables, table_id[i]); } } //Get the right FLO variable for each well as a single ADB const ADB flo = detail::combineADBVars(well_tables, aqua, liquid, vapour); //Compute the BHP for each well independently for (int i=0; igetFloAxis()); auto thp_i = detail::findInterpData(thp_arg.value()[i], table->getTHPAxis()); detail::VFPEvaluation bhp_val = detail::interpolate(table->getTable(), flo_i, thp_i); value[i] = bhp_val.value; dthp[i] = bhp_val.dthp; dflo[i] = bhp_val.dflo; } else { value[i] = -1e100; //Signal that this value has not been calculated properly, due to "missing" table } } //Create diagonal matrices from ADB::Vs ADB::M dthp_diag(dthp.matrix().asDiagonal()); ADB::M dflo_diag(dflo.matrix().asDiagonal()); //Calculate the Jacobians const int num_blocks = block_pattern.size(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { //Could have used fastSparseProduct and temporary variables //but may not save too much on that. jacs[block] = ADB::M(nw, block_pattern[block]); if (!thp_arg.derivative().empty()) { jacs[block] += dthp_diag * thp_arg.derivative()[block]; } if (!flo.derivative().empty()) { jacs[block] += dflo_diag * flo.derivative()[block]; } } ADB retval = ADB::function(std::move(value), std::move(jacs)); return retval; } double VFPInjProperties::bhp(int table_id, const double& aqua, const double& liquid, const double& vapour, const double& thp_arg) const { const VFPInjTable* table = detail::getTable(m_tables, table_id); detail::VFPEvaluation retval = detail::bhp(table, aqua, liquid, vapour, thp_arg); return retval.value; } double VFPInjProperties::thp(int table_id, const double& aqua, const double& liquid, const double& vapour, const double& bhp_arg) const { const VFPInjTable* table = detail::getTable(m_tables, table_id); const VFPInjTable::array_type& data = table->getTable(); //Find interpolation variables double flo = detail::getFlo(aqua, liquid, vapour, table->getFloType()); const std::vector thp_array = table->getTHPAxis(); int nthp = thp_array.size(); /** * Find the function bhp_array(thp) by creating a 1D view of the data * by interpolating for every value of thp. This might be somewhat * expensive, but let us assome that nthp is small */ auto flo_i = detail::findInterpData(flo, table->getFloAxis()); std::vector bhp_array(nthp); for (int i=0; i