/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#include
#include
#include
#include
#include
#include
namespace Opm
{
// Making these typedef to make the code more readable.
typedef BlackoilPropsAd::ADB ADB;
typedef BlackoilPropsAd::V V;
typedef Eigen::Array Block;
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props)
: props_(props),
pu_(props.phaseUsage())
{
}
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int BlackoilPropsAd::numDimensions() const
{
return props_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropsAd::numCells() const
{
return props_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropsAd::porosity() const
{
return props_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropsAd::permeability() const
{
return props_.permeability();
}
////////////////////////////
// Fluid interface //
////////////////////////////
/// \return Number of active phases (also the number of components).
int BlackoilPropsAd::numPhases() const
{
return props_.numPhases();
}
/// \return Object describing the active phases.
PhaseUsage BlackoilPropsAd::phaseUsage() const
{
return props_.phaseUsage();
}
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \return Array of 3 density values.
const double* BlackoilPropsAd::surfaceDensity() const
{
return props_.surfaceDensity();
}
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAd::muWat(const V& pw,
const Cells& cells) const
{
if (!pu_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
assert(pw.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block mu(n, np);
props_.viscosity(n, pw.data(), z.data(), cells.data(), mu.data(), 0);
return mu.col(pu_.phase_pos[Water]);
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAd::muOil(const V& po,
const V& rs,
const bool* /*isSat*/,
const Cells& cells) const
{
if (!pu_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
assert(po.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
if (pu_.phase_used[Gas]) {
// Faking a z with the right ratio:
// rs = zg/zo
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
z.col(pu_.phase_pos[Gas]) = rs;
}
Block mu(n, np);
props_.viscosity(n, po.data(), z.data(), cells.data(), mu.data(), 0);
return mu.col(pu_.phase_pos[Oil]);
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
V BlackoilPropsAd::muGas(const V& pg,
const Cells& cells) const
{
if (!pu_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
assert(pg.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block mu(n, np);
props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
return mu.col(pu_.phase_pos[Gas]);
}
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAd::muWat(const ADB& pw,
const Cells& cells) const
{
#if 1
return ADB::constant(muWat(pw.value(), cells), pw.blockPattern());
#else
if (!pu_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
assert(pw.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block mu(n, np);
Block dmu(n, np);
props_.viscosity(n, pw.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Water]));
const int num_blocks = pw.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmu_diag * pw.derivative()[block];
}
return ADB::function(mu.col(pu_.phase_pos[Water]), jacs);
#endif
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAd::muOil(const ADB& po,
const ADB& rs,
const bool* isSat,
const Cells& cells) const
{
#if 1
return ADB::constant(muOil(po.value(), rs.value(), isSat,cells), po.blockPattern());
#else
if (!pu_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
assert(po.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
if (pu_.phase_used[Gas]) {
// Faking a z with the right ratio:
// rs = zg/zo
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
z.col(pu_.phase_pos[Gas]) = rs.value();
}
Block mu(n, np);
Block dmu(n, np);
props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil]));
const int num_blocks = po.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
// For now, we deliberately ignore the derivative with respect to rs,
// since the BlackoilPropertiesInterface class does not evaluate it.
// We would add to the next line: + dmu_drs_diag * rs.derivative()[block]
jacs[block] = dmu_diag * po.derivative()[block];
}
return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs);
#endif
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAd::muGas(const ADB& pg,
const Cells& cells) const
{
#if 1
return ADB::constant(muGas(pg.value(), cells), pg.blockPattern());
#else
if (!pu_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
assert(pg.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block mu(n, np);
Block dmu(n, np);
props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas]));
const int num_blocks = pg.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dmu_diag * pg.derivative()[block];
}
return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs);
#endif
}
// ------ Formation volume factor (b) ------
// These methods all call the matrix() method, after which the variable
// (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for
// a cell. For three-phase black oil:
// A = [ bw 0 0
// 0 bo 0
// 0 b0*rs bw ]
// Where b = B^{-1}.
// Therefore, we extract the correct diagonal element, and are done.
// When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs),
// we also get the following derivative matrix:
// A = [ dbw 0 0
// 0 dbo 0
// 0 db0*rs dbw ]
// Again, we just extract a diagonal element.
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAd::bWat(const V& pw,
const Cells& cells) const
{
if (!pu_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present.");
}
const int n = cells.size();
assert(pw.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block matrix(n, np*np);
props_.matrix(n, pw.data(), z.data(), cells.data(), matrix.data(), 0);
const int wi = pu_.phase_pos[Water];
return matrix.col(wi*np + wi);
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAd::bOil(const V& po,
const V& rs,
const bool* /*isSat*/,
const Cells& cells) const
{
if (!pu_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not present.");
}
const int n = cells.size();
assert(po.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
if (pu_.phase_used[Gas]) {
// Faking a z with the right ratio:
// rs = zg/zo
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
z.col(pu_.phase_pos[Gas]) = rs;
}
Block matrix(n, np*np);
props_.matrix(n, po.data(), z.data(), cells.data(), matrix.data(), 0);
const int oi = pu_.phase_pos[Oil];
return matrix.col(oi*np + oi);
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
V BlackoilPropsAd::bGas(const V& pg,
const Cells& cells) const
{
if (!pu_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present.");
}
const int n = cells.size();
assert(pg.size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block matrix(n, np*np);
props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0);
const int gi = pu_.phase_pos[Gas];
return matrix.col(gi*np + gi);
}
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAd::bWat(const ADB& pw,
const Cells& cells) const
{
if (!pu_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present.");
}
const int n = cells.size();
assert(pw.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block matrix(n, np*np);
Block dmatrix(n, np*np);
props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
const int phase_ind = pu_.phase_pos[Water];
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
ADB::M db_diag = spdiag(dmatrix.col(column));
const int num_blocks = pw.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = db_diag * pw.derivative()[block];
}
return ADB::function(matrix.col(column), jacs);
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAd::bOil(const ADB& po,
const ADB& rs,
const bool* /*isSat*/,
const Cells& cells) const
{
if (!pu_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
}
const int n = cells.size();
assert(po.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
if (pu_.phase_used[Gas]) {
// Faking a z with the right ratio:
// rs = zg/zo
z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
z.col(pu_.phase_pos[Gas]) = rs.value();
}
Block matrix(n, np*np);
Block dmatrix(n, np*np);
props_.matrix(n, po.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
const int phase_ind = pu_.phase_pos[Oil];
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
ADB::M db_diag = spdiag(dmatrix.col(column));
const int num_blocks = po.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
// For now, we deliberately ignore the derivative with respect to rs,
// since the BlackoilPropertiesInterface class does not evaluate it.
// We would add to the next line: + db_drs_diag * rs.derivative()[block]
jacs[block] = db_diag * po.derivative()[block];
}
return ADB::function(matrix.col(column), jacs);
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAd::bGas(const ADB& pg,
const Cells& cells) const
{
if (!pu_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
}
const int n = cells.size();
assert(pg.value().size() == n);
const int np = props_.numPhases();
Block z = Block::Zero(n, np);
Block matrix(n, np*np);
Block dmatrix(n, np*np);
props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
const int phase_ind = pu_.phase_pos[Gas];
const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
ADB::M db_diag = spdiag(dmatrix.col(column));
const int num_blocks = pg.numBlocks();
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = db_diag * pg.derivative()[block];
}
return ADB::function(matrix.col(column), jacs);
}
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
V BlackoilPropsAd::rsMax(const V& po,
const Cells& cells) const
{
// Suppress warning about "unused parameters".
static_cast(po);
static_cast(cells);
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
}
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB BlackoilPropsAd::rsMax(const ADB& po,
const Cells& cells) const
{
// Suppress warning about "unused parameters".
static_cast(po);
static_cast(cells);
OPM_THROW(std::runtime_error, "Method rsMax() not implemented.");
}
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector BlackoilPropsAd::relperm(const V& sw,
const V& so,
const V& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = props_.numPhases();
Block s_all(n, np);
if (pu_.phase_used[Water]) {
assert(sw.size() == n);
s_all.col(pu_.phase_pos[Water]) = sw;
}
if (pu_.phase_used[Oil]) {
assert(so.size() == n);
s_all.col(pu_.phase_pos[Oil]) = so;
}
if (pu_.phase_used[Gas]) {
assert(sg.size() == n);
s_all.col(pu_.phase_pos[Gas]) = sg;
}
Block kr(n, np);
props_.relperm(n, s_all.data(), cells.data(), kr.data(), 0);
std::vector relperms;
relperms.reserve(3);
for (int phase = 0; phase < 3; ++phase) {
if (pu_.phase_used[phase]) {
relperms.emplace_back(kr.col(pu_.phase_pos[phase]));
} else {
relperms.emplace_back();
}
}
return relperms;
}
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector BlackoilPropsAd::relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = props_.numPhases();
Block s_all(n, np);
if (pu_.phase_used[Water]) {
assert(sw.value().size() == n);
s_all.col(pu_.phase_pos[Water]) = sw.value();
}
if (pu_.phase_used[Oil]) {
assert(so.value().size() == n);
s_all.col(pu_.phase_pos[Oil]) = so.value();
} else {
OPM_THROW(std::runtime_error, "BlackoilPropsAd::relperm() assumes oil phase is active.");
}
if (pu_.phase_used[Gas]) {
assert(sg.value().size() == n);
s_all.col(pu_.phase_pos[Gas]) = sg.value();
}
Block kr(n, np);
Block dkr(n, np*np);
props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
const int num_blocks = so.numBlocks();
std::vector relperms;
relperms.reserve(3);
typedef const ADB* ADBPtr;
ADBPtr s[3] = { &sw, &so, &sg };
for (int phase1 = 0; phase1 < 3; ++phase1) {
if (pu_.phase_used[phase1]) {
const int phase1_pos = pu_.phase_pos[phase1];
std::vector jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
}
for (int phase2 = 0; phase2 < 3; ++phase2) {
if (!pu_.phase_used[phase2]) {
continue;
}
const int phase2_pos = pu_.phase_pos[phase2];
// Assemble dkr1/ds2.
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
for (int block = 0; block < num_blocks; ++block) {
jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
}
}
relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
} else {
relperms.emplace_back(ADB::null());
}
}
return relperms;
}
} // namespace Opm