/* Copyright 2013 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include namespace Opm { // Making these typedef to make the code more readable. typedef BlackoilPropsAd::ADB ADB; typedef BlackoilPropsAd::V V; typedef Eigen::Array Block; /// Constructor wrapping an opm-core black oil interface. BlackoilPropsAd::BlackoilPropsAd(const BlackoilPropertiesInterface& props) : props_(props), pu_(props.phaseUsage()) { } //////////////////////////// // Rock interface // //////////////////////////// /// \return D, the number of spatial dimensions. int BlackoilPropsAd::numDimensions() const { return props_.numDimensions(); } /// \return N, the number of cells. int BlackoilPropsAd::numCells() const { return props_.numCells(); } /// \return Array of N porosity values. const double* BlackoilPropsAd::porosity() const { return props_.porosity(); } /// \return Array of ND^2 permeability values. /// The D^2 permeability values for a cell are organized as a matrix, /// which is symmetric (so ordering does not matter). const double* BlackoilPropsAd::permeability() const { return props_.permeability(); } //////////////////////////// // Fluid interface // //////////////////////////// /// \return Number of active phases (also the number of components). int BlackoilPropsAd::numPhases() const { return props_.numPhases(); } /// \return Object describing the active phases. PhaseUsage BlackoilPropsAd::phaseUsage() const { return props_.phaseUsage(); } // ------ Density ------ /// Densities of stock components at surface conditions. /// \return Array of 3 density values. const double* BlackoilPropsAd::surfaceDensity() const { return props_.surfaceDensity(); } // ------ Viscosity ------ /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAd::muWat(const V& pw, const Cells& cells) const { if (!pu_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block mu(n, np); props_.viscosity(n, pw.data(), z.data(), cells.data(), mu.data(), 0); return mu.col(pu_.phase_pos[Water]); } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAd::muOil(const V& po, const V& rs, const bool* /*isSat*/, const Cells& cells) const { if (!pu_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); if (pu_.phase_used[Gas]) { // Faking a z with the right ratio: // rs = zg/zo z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1); z.col(pu_.phase_pos[Gas]) = rs; } Block mu(n, np); props_.viscosity(n, po.data(), z.data(), cells.data(), mu.data(), 0); return mu.col(pu_.phase_pos[Oil]); } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. V BlackoilPropsAd::muGas(const V& pg, const Cells& cells) const { if (!pu_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block mu(n, np); props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0); return mu.col(pu_.phase_pos[Gas]); } /// Water viscosity. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAd::muWat(const ADB& pw, const Cells& cells) const { #if 1 return ADB::constant(muWat(pw.value(), cells), pw.blockPattern()); #else if (!pu_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block mu(n, np); Block dmu(n, np); props_.viscosity(n, pw.value().data(), z.data(), cells.data(), mu.data(), dmu.data()); ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Water])); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmu_diag * pw.derivative()[block]; } return ADB::function(mu.col(pu_.phase_pos[Water]), jacs); #endif } /// Oil viscosity. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAd::muOil(const ADB& po, const ADB& rs, const bool* isSat, const Cells& cells) const { #if 1 return ADB::constant(muOil(po.value(), rs.value(), isSat,cells), po.blockPattern()); #else if (!pu_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); if (pu_.phase_used[Gas]) { // Faking a z with the right ratio: // rs = zg/zo z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1); z.col(pu_.phase_pos[Gas]) = rs.value(); } Block mu(n, np); Block dmu(n, np); props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data()); ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil])); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { // For now, we deliberately ignore the derivative with respect to rs, // since the BlackoilPropertiesInterface class does not evaluate it. // We would add to the next line: + dmu_drs_diag * rs.derivative()[block] jacs[block] = dmu_diag * po.derivative()[block]; } return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs); #endif } /// Gas viscosity. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n viscosity values. ADB BlackoilPropsAd::muGas(const ADB& pg, const Cells& cells) const { #if 1 return ADB::constant(muGas(pg.value(), cells), pg.blockPattern()); #else if (!pu_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block mu(n, np); Block dmu(n, np); props_.viscosity(n, pg.value().data(), z.data(), cells.data(), mu.data(), dmu.data()); ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Gas])); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dmu_diag * pg.derivative()[block]; } return ADB::function(mu.col(pu_.phase_pos[Gas]), jacs); #endif } // ------ Formation volume factor (b) ------ // These methods all call the matrix() method, after which the variable // (also) called 'matrix' contains, in each row, the A = RB^{-1} matrix for // a cell. For three-phase black oil: // A = [ bw 0 0 // 0 bo 0 // 0 b0*rs bw ] // Where b = B^{-1}. // Therefore, we extract the correct diagonal element, and are done. // When we need the derivatives (w.r.t. p, since we don't do w.r.t. rs), // we also get the following derivative matrix: // A = [ dbw 0 0 // 0 dbo 0 // 0 db0*rs dbw ] // Again, we just extract a diagonal element. /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAd::bWat(const V& pw, const Cells& cells) const { if (!pu_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present."); } const int n = cells.size(); assert(pw.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block matrix(n, np*np); props_.matrix(n, pw.data(), z.data(), cells.data(), matrix.data(), 0); const int wi = pu_.phase_pos[Water]; return matrix.col(wi*np + wi); } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAd::bOil(const V& po, const V& rs, const bool* /*isSat*/, const Cells& cells) const { if (!pu_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not present."); } const int n = cells.size(); assert(po.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); if (pu_.phase_used[Gas]) { // Faking a z with the right ratio: // rs = zg/zo z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1); z.col(pu_.phase_pos[Gas]) = rs; } Block matrix(n, np*np); props_.matrix(n, po.data(), z.data(), cells.data(), matrix.data(), 0); const int oi = pu_.phase_pos[Oil]; return matrix.col(oi*np + oi); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. V BlackoilPropsAd::bGas(const V& pg, const Cells& cells) const { if (!pu_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present."); } const int n = cells.size(); assert(pg.size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block matrix(n, np*np); props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0); const int gi = pu_.phase_pos[Gas]; return matrix.col(gi*np + gi); } /// Water formation volume factor. /// \param[in] pw Array of n water pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAd::bWat(const ADB& pw, const Cells& cells) const { if (!pu_.phase_used[Water]) { OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not present."); } const int n = cells.size(); assert(pw.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block matrix(n, np*np); Block dmatrix(n, np*np); props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data()); const int phase_ind = pu_.phase_pos[Water]; const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column. ADB::M db_diag = spdiag(dmatrix.col(column)); const int num_blocks = pw.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = db_diag * pw.derivative()[block]; } return ADB::function(matrix.col(column), jacs); } /// Oil formation volume factor. /// \param[in] po Array of n oil pressure values. /// \param[in] rs Array of n gas solution factor values. /// \param[in] isSat Array of n booleans telling whether the fluid is saturated or not. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAd::bOil(const ADB& po, const ADB& rs, const bool* /*isSat*/, const Cells& cells) const { if (!pu_.phase_used[Oil]) { OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present."); } const int n = cells.size(); assert(po.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); if (pu_.phase_used[Gas]) { // Faking a z with the right ratio: // rs = zg/zo z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1); z.col(pu_.phase_pos[Gas]) = rs.value(); } Block matrix(n, np*np); Block dmatrix(n, np*np); props_.matrix(n, po.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data()); const int phase_ind = pu_.phase_pos[Oil]; const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column. ADB::M db_diag = spdiag(dmatrix.col(column)); const int num_blocks = po.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { // For now, we deliberately ignore the derivative with respect to rs, // since the BlackoilPropertiesInterface class does not evaluate it. // We would add to the next line: + db_drs_diag * rs.derivative()[block] jacs[block] = db_diag * po.derivative()[block]; } return ADB::function(matrix.col(column), jacs); } /// Gas formation volume factor. /// \param[in] pg Array of n gas pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n formation volume factor values. ADB BlackoilPropsAd::bGas(const ADB& pg, const Cells& cells) const { if (!pu_.phase_used[Gas]) { OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present."); } const int n = cells.size(); assert(pg.value().size() == n); const int np = props_.numPhases(); Block z = Block::Zero(n, np); Block matrix(n, np*np); Block dmatrix(n, np*np); props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data()); const int phase_ind = pu_.phase_pos[Gas]; const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column. ADB::M db_diag = spdiag(dmatrix.col(column)); const int num_blocks = pg.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = db_diag * pg.derivative()[block]; } return ADB::function(matrix.col(column), jacs); } // ------ Rs bubble point curve ------ /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. V BlackoilPropsAd::rsMax(const V& po, const Cells& cells) const { // Suppress warning about "unused parameters". static_cast(po); static_cast(cells); OPM_THROW(std::runtime_error, "Method rsMax() not implemented."); } /// Bubble point curve for Rs as function of oil pressure. /// \param[in] po Array of n oil pressure values. /// \param[in] cells Array of n cell indices to be associated with the pressure values. /// \return Array of n bubble point values for Rs. ADB BlackoilPropsAd::rsMax(const ADB& po, const Cells& cells) const { // Suppress warning about "unused parameters". static_cast(po); static_cast(cells); OPM_THROW(std::runtime_error, "Method rsMax() not implemented."); } // ------ Relative permeability ------ /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAd::relperm(const V& sw, const V& so, const V& sg, const Cells& cells) const { const int n = cells.size(); const int np = props_.numPhases(); Block s_all(n, np); if (pu_.phase_used[Water]) { assert(sw.size() == n); s_all.col(pu_.phase_pos[Water]) = sw; } if (pu_.phase_used[Oil]) { assert(so.size() == n); s_all.col(pu_.phase_pos[Oil]) = so; } if (pu_.phase_used[Gas]) { assert(sg.size() == n); s_all.col(pu_.phase_pos[Gas]) = sg; } Block kr(n, np); props_.relperm(n, s_all.data(), cells.data(), kr.data(), 0); std::vector relperms; relperms.reserve(3); for (int phase = 0; phase < 3; ++phase) { if (pu_.phase_used[phase]) { relperms.emplace_back(kr.col(pu_.phase_pos[phase])); } else { relperms.emplace_back(); } } return relperms; } /// Relative permeabilities for all phases. /// \param[in] sw Array of n water saturation values. /// \param[in] so Array of n oil saturation values. /// \param[in] sg Array of n gas saturation values. /// \param[in] cells Array of n cell indices to be associated with the saturation values. /// \return An std::vector with 3 elements, each an array of n relperm values, /// containing krw, kro, krg. Use PhaseIndex for indexing into the result. std::vector BlackoilPropsAd::relperm(const ADB& sw, const ADB& so, const ADB& sg, const Cells& cells) const { const int n = cells.size(); const int np = props_.numPhases(); Block s_all(n, np); if (pu_.phase_used[Water]) { assert(sw.value().size() == n); s_all.col(pu_.phase_pos[Water]) = sw.value(); } if (pu_.phase_used[Oil]) { assert(so.value().size() == n); s_all.col(pu_.phase_pos[Oil]) = so.value(); } else { OPM_THROW(std::runtime_error, "BlackoilPropsAd::relperm() assumes oil phase is active."); } if (pu_.phase_used[Gas]) { assert(sg.value().size() == n); s_all.col(pu_.phase_pos[Gas]) = sg.value(); } Block kr(n, np); Block dkr(n, np*np); props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data()); const int num_blocks = so.numBlocks(); std::vector relperms; relperms.reserve(3); typedef const ADB* ADBPtr; ADBPtr s[3] = { &sw, &so, &sg }; for (int phase1 = 0; phase1 < 3; ++phase1) { if (pu_.phase_used[phase1]) { const int phase1_pos = pu_.phase_pos[phase1]; std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols()); } for (int phase2 = 0; phase2 < 3; ++phase2) { if (!pu_.phase_used[phase2]) { continue; } const int phase2_pos = pu_.phase_pos[phase2]; // Assemble dkr1/ds2. const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm() ADB::M dkr1_ds2_diag = spdiag(dkr.col(column)); for (int block = 0; block < num_blocks; ++block) { jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block]; } } relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs)); } else { relperms.emplace_back(ADB::null()); } } return relperms; } } // namespace Opm