/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#ifndef OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED
#define OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED
#include
#include
#include
struct UnstructuredGrid;
struct Wells;
namespace Opm {
class DerivedGeology;
class RockCompressibility;
class LinearSolverInterface;
class BlackoilState;
class WellState;
/// A fully implicit solver for the black-oil problem.
///
/// The simulator is capable of handling three-phase problems
/// where gas can be dissolved in oil (but not vice versa). It
/// uses an industry-standard TPFA discretization with per-phase
/// upwind weighting of mobilities.
///
/// It uses automatic differentiation via the class AutoDiffBlock
/// to simplify assembly of the jacobian matrix.
class FullyImplicitBlackoilSolver
{
public:
/// Construct a solver. It will retain references to the
/// arguments of this functions, and they are expected to
/// remain in scope for the lifetime of the solver.
/// \param[in] grid grid data structure
/// \param[in] fluid fluid properties
/// \param[in] geo rock properties
/// \param[in] rock_comp_props if non-null, rock compressibility properties
/// \param[in] wells well structure
/// \param[in] linsolver linear solver
FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells& wells,
const LinearSolverInterface& linsolver);
/// Take a single forward step, modifiying
/// state.pressure()
/// state.faceflux()
/// state.saturation()
/// state.gasoilratio()
/// wstate.bhp()
/// \param[in] dt time step size
/// \param[in] state reservoir state
/// \param[in] wstate well state
void
step(const double dt ,
BlackoilState& state ,
WellState& wstate);
private:
// Types and enums
typedef AutoDiffBlock ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array DataBlock;
struct ReservoirResidualQuant {
ReservoirResidualQuant();
std::vector accum; // Accumulations
ADB mflux; // Mass flux (surface conditions)
ADB b; // Reciprocal FVF
ADB head; // Pressure drop across int. interfaces
ADB mob; // Phase mobility (per cell)
};
struct SolutionState {
SolutionState(const int np);
ADB pressure;
std::vector saturation;
ADB rs;
ADB qs;
ADB bhp;
};
struct WellOps {
WellOps(const Wells& wells);
M w2p; // well -> perf (scatter)
M p2w; // perf -> well (gather)
};
enum { Water = BlackoilPropsAdInterface::Water,
Oil = BlackoilPropsAdInterface::Oil ,
Gas = BlackoilPropsAdInterface::Gas };
// Member data
const UnstructuredGrid& grid_;
const BlackoilPropsAdInterface& fluid_;
const DerivedGeology& geo_;
const RockCompressibility* rock_comp_props_;
const Wells& wells_;
const LinearSolverInterface& linsolver_;
// For each canonical phase -> true if active
const std::vector active_;
// Size = # active faces. Maps active -> canonical phase indices.
const std::vector canph_;
const std::vector cells_; // All grid cells
HelperOps ops_;
const WellOps wops_;
const M grav_;
std::vector rq_;
// The mass_balance vector has one element for each active phase,
// each of which has size equal to the number of cells.
// The well_eq has size equal to the number of wells.
struct {
std::vector mass_balance;
ADB rs_or_sg_eq; // Only used if both gas and oil present
ADB well_flux_eq;
ADB well_eq;
} residual_;
// Private methods.
SolutionState
constantState(const BlackoilState& x,
const WellState& xw);
SolutionState
variableState(const BlackoilState& x,
const WellState& xw);
void
computeAccum(const SolutionState& state,
const int aix );
void
assemble(const V& dtpv,
const BlackoilState& x ,
const WellState& xw );
V solveJacobianSystem() const;
void updateState(const V& dx,
BlackoilState& state,
WellState& well_state) const;
std::vector
computeRelPerm(const SolutionState& state) const;
std::vector
computeRelPermWells(const SolutionState& state,
const DataBlock& well_s,
const std::vector& well_cells) const;
void
computeMassFlux(const int actph ,
const V& transi,
const std::vector& kr ,
const SolutionState& state );
double
residualNorm() const;
ADB
fluidViscosity(const int phase,
const ADB& p ,
const ADB& rs ,
const bool* isSat,
const std::vector& cells) const;
ADB
fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& rs ,
const bool* isSat,
const std::vector& cells) const;
ADB
fluidDensity(const int phase,
const ADB& p ,
const ADB& rs ,
const bool* isSat,
const std::vector& cells) const;
V
fluidRsMax(const V& p,
const std::vector& cells) const;
ADB
fluidRsMax(const ADB& p,
const std::vector& cells) const;
ADB
poroMult(const ADB& p) const;
ADB
transMult(const ADB& p) const;
void
getSaturatedCells(const SolutionState& state, bool* isSat) const;
};
} // namespace Opm
#endif // OPM_FULLYIMPLICITBLACKOILSOLVER_HEADER_INCLUDED