/* Copyright 2011 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include namespace Opm { void WellCollection::addField(const Group& fieldGroup, size_t timeStep, const PhaseUsage& phaseUsage) { WellsGroupInterface* fieldNode = findNode(fieldGroup.name()); if (fieldNode) { OPM_THROW(std::runtime_error, "Trying to add FIELD node, but this already exists. Can only have one FIELD node."); } roots_.push_back(createGroupWellsGroup(fieldGroup, timeStep, phaseUsage)); } void WellCollection::addGroup(const Group& groupChild, std::string parent_name, size_t timeStep, const PhaseUsage& phaseUsage) { WellsGroupInterface* parent = findNode(parent_name); if (!parent) { OPM_THROW(std::runtime_error, "Trying to add child group to group named " << parent_name << ", but this does not exist in the WellCollection."); } if (findNode(groupChild.name())) { OPM_THROW(std::runtime_error, "Trying to add child group named " << groupChild.name() << ", but this group is already in the WellCollection."); } if (groupChild.isProductionGroup(timeStep) || groupChild.isInjectionGroup(timeStep)) { group_control_active_ = true; } std::shared_ptr child = createGroupWellsGroup(groupChild, timeStep, phaseUsage); if (child->injSpec().control_mode_ == InjectionSpecification::VREP) { having_vrep_groups_ = true; } WellsGroup* parent_as_group = static_cast (parent); if (!parent_as_group) { OPM_THROW(std::runtime_error, "Trying to add child group to group named " << parent->name() << ", but it's not a group."); } parent_as_group->addChild(child); child->setParent(parent); } void WellCollection::addWell(const Well2& wellChild, const SummaryState& summaryState, size_t timeStep, const PhaseUsage& phaseUsage) { if (wellChild.getStatus() == WellCommon::SHUT) { //SHUT wells are not added to the well collection return; } WellsGroupInterface* parent = findNode(wellChild.groupName()); if (!parent) { OPM_THROW(std::runtime_error, "Trying to add well " << wellChild.name() << " Step: " << boost::lexical_cast(timeStep) << " to group named " << wellChild.groupName() << ", but this group does not exist in the WellCollection."); } std::shared_ptr child = createWellWellsGroup(wellChild, summaryState, phaseUsage); WellsGroup* parent_as_group = static_cast (parent); if (!parent_as_group) { OPM_THROW(std::runtime_error, "Trying to add well to group named " << wellChild.groupName() << ", but it's not a group."); } parent_as_group->addChild(child); leaf_nodes_.push_back(static_cast(child.get())); child->setParent(parent); } const std::vector& WellCollection::getLeafNodes() const { return leaf_nodes_; } WellsGroupInterface* WellCollection::findNode(const std::string& name) { for (size_t i = 0; i < roots_.size(); i++) { WellsGroupInterface* result = roots_[i]->findGroup(name); if (result) { return result; } } return NULL; } const WellsGroupInterface* WellCollection::findNode(const std::string& name) const { for (size_t i = 0; i < roots_.size(); i++) { WellsGroupInterface* result = roots_[i]->findGroup(name); if (result) { return result; } } return NULL; } WellNode& WellCollection::findWellNode(const std::string& name) const { auto well_node = std::find_if(leaf_nodes_.begin(), leaf_nodes_.end(), [&] ( WellNode* w) { return w->name() == name; }); // Does not find the well if (well_node == leaf_nodes_.end()) { OPM_THROW(std::runtime_error, "Could not find well " << name << " in the well collection!\n"); } return *(*well_node); } /// Adds the child to the collection /// and appends it to parent's children. /// \param[in] child the child node /// \param[in] parent name of parent node void WellCollection::addChild(std::shared_ptr& child_node, const std::string& parent_name) { WellsGroupInterface* parent = findNode(parent_name); if (parent == NULL) { OPM_THROW(std::runtime_error, "Parent with name = " << parent_name << " not found."); } assert(!parent->isLeafNode()); static_cast(parent)->addChild(child_node); if (child_node->isLeafNode()) { leaf_nodes_.push_back(static_cast(child_node.get())); } } /// Adds the node to the collection (as a root node) void WellCollection::addChild(std::shared_ptr& child_node) { roots_.push_back(child_node); if (child_node->isLeafNode()) { leaf_nodes_.push_back(static_cast (child_node.get())); } } bool WellCollection::conditionsMet(const std::vector& well_bhp, const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { for (size_t i = 0; i < roots_.size(); i++) { WellPhasesSummed phases; if (!roots_[i]->conditionsMet(well_bhp, well_reservoirrates_phase, well_surfacerates_phase, phases)) { return false; } } return true; } void WellCollection::setWellsPointer(Wells* wells) { for(size_t i = 0; i < leaf_nodes_.size(); i++) { leaf_nodes_[i]->setWellsPointer(wells, i); } } void WellCollection::applyGroupControls() { for (size_t i = 0; i < roots_.size(); ++i) { roots_[i]->applyProdGroupControls(); roots_[i]->applyInjGroupControls(); } group_control_applied_ = true; } /// Applies explicit reinjection controls. This must be called at each timestep to be correct. /// \param[in] well_reservoirrates_phase /// A vector containing reservoir rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. /// \param[in] well_surfacerates_phase /// A vector containing surface rates by phase for each well. /// Is assumed to be ordered the same way as the related Wells-struct, /// with all phase rates of a single well adjacent in the array. void WellCollection::applyExplicitReinjectionControls(const std::vector& well_reservoirrates_phase, const std::vector& well_surfacerates_phase) { for (size_t i = 0; i < roots_.size(); ++i) { roots_[i]->applyExplicitReinjectionControls(well_reservoirrates_phase, well_surfacerates_phase); } } void WellCollection::applyVREPGroupControls(const std::vector& well_voidage_rates, const std::vector& conversion_coeffs) { for (size_t i = 0; i < roots_.size(); ++i) { roots_[i]->applyVREPGroupControls(well_voidage_rates, conversion_coeffs); } } // TODO: later, it should be extended to update group targets bool WellCollection::needUpdateWellTargets() const { return needUpdateInjectionTargets() || needUpdateProductionTargets(); } bool WellCollection::needUpdateInjectionTargets() const { // TODO: it should based on individual group // With current approach, it will potentially result in more update, // thus more iterations, while it will not cause result wrong. // If the group control and individual control is mixed, then it need to // update the well targets bool any_group_control_node = false; bool any_individual_control_node = false; for (size_t i = 0; i < leaf_nodes_.size(); ++i) { if (leaf_nodes_[i]->isInjector()) { if (leaf_nodes_[i]->individualControl()) { any_individual_control_node = true; } else { any_group_control_node = true; } } } return (any_group_control_node && any_individual_control_node); } // These two functions should be made one bool WellCollection::needUpdateProductionTargets() const { // TODO: it should based on individual group // With current approach, it will potentially result in more update, // thus more iterations, while it will not cause result wrong. // If the group control and individual control is mixed, then it need to // update the well targets bool any_group_control_node = false; bool any_individual_control_node = false; for (size_t i = 0; i < leaf_nodes_.size(); ++i) { if (leaf_nodes_[i]->isProducer()) { if (leaf_nodes_[i]->individualControl()) { any_individual_control_node = true; } else { any_group_control_node = true; } } } return (any_group_control_node && any_individual_control_node); } void WellCollection::updateWellTargets(const std::vector& well_rates) { // TODO: if it gets converged, should we still update targets? // set the target_updated to be false for (WellNode* well_node : leaf_nodes_) { well_node->setTargetUpdated(false); } // TODO: currently, we only handle the level of the well groups for the moment, i.e. the level just above wells // We believe the relations between groups are similar to the relations between different wells inside the same group. // While there will be somre more complication invloved for sure. for (size_t i = 0; i < leaf_nodes_.size(); ++i) { // find a node needs to update targets, then update targets for all the wellls inside the group. if (!leaf_nodes_[i]->targetUpdated()) { WellsGroupInterface* parent_node = leaf_nodes_[i]->getParent(); // update the target within this group. if (leaf_nodes_[i]->isProducer()) { if (parent_node->prodSpec().control_mode_ == ProductionSpecification::NONE) { continue; } parent_node->updateWellProductionTargets(well_rates); } if (leaf_nodes_[i]->isInjector()) { if (parent_node->injSpec().control_mode_ == InjectionSpecification::NONE) { continue; } parent_node->updateWellInjectionTargets(well_rates); } } } } bool WellCollection::havingVREPGroups() const { return having_vrep_groups_; } bool WellCollection::groupControlActive() const { return group_control_active_; } bool WellCollection::groupControlApplied() const { return group_control_applied_; } bool WellCollection::groupTargetConverged(const std::vector& well_rates) const { // TODO: eventually, there should be only one root node // TODO: we also need to check the injection target, while we have not done that. for (const std::shared_ptr& root_node : roots_) { if ( !root_node->groupProdTargetConverged(well_rates) ) { return false; } } return true; } void WellCollection:: setGuideRatesWithPotentials(const Wells* wells, const PhaseUsage& phase_usage, const std::vector& well_potentials) const { // TODO: assuming the order of well_potentials is the same with the order in wells struct // TODO: it will overwrite the well potentials from other means. It should be changed after // fixing the other part of the code. It makes the current flow only support guide rates based on // well potentials. const int np = wells->number_of_phases; const int nw = wells->number_of_wells; for (int w = 0; w < nw; ++w) { const std::string well_name = wells->name[w]; WellNode& well_node = findWellNode(well_name); const WellType well_type = wells->type[w]; // TODO: eventually the following standard will be wrong, it will belong to FIELD group if (well_node.getParent() != nullptr) { // If it does not belong a group, will it belong to FIELD? const WellsGroupInterface* group = well_node.getParent(); if (well_type == PRODUCER) { // The guide rates is calculated based on the group control // Currently only supporting WRAT, ORAT and GRAT. ProductionSpecification::ControlMode control_mode = group->prodSpec().control_mode_; if (control_mode == ProductionSpecification::FLD) { if (group->getParent() != nullptr) { // TODO: only handle one level FLD control const WellsGroupInterface* higher_group = group->getParent(); control_mode = higher_group->prodSpec().control_mode_; } else { OPM_THROW(std::runtime_error, "Group " << group->name() << " is under FLD control while no higher level of group is specified."); } } switch (control_mode) { case ProductionSpecification::WRAT: { if (!phase_usage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not used, yet found water rate controlled well."); } const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua]; well_node.prodSpec().guide_rate_ = well_potentials[np * w + water_index]; well_node.prodSpec().guide_rate_type_ = ProductionSpecification::WATER; break; } case ProductionSpecification::ORAT: { if (!phase_usage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil rate controlled well."); } const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid]; well_node.prodSpec().guide_rate_ = well_potentials[np * w + oil_index]; well_node.prodSpec().guide_rate_type_ = ProductionSpecification::OIL; break; } case ProductionSpecification::GRAT: { if (!phase_usage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas rate controlled well."); } const int gas_index = phase_usage.phase_pos[BlackoilPhases::Vapour]; well_node.prodSpec().guide_rate_ = well_potentials[np * w + gas_index]; well_node.prodSpec().guide_rate_type_ = ProductionSpecification::GAS; break; } case ProductionSpecification::FLD: { OPM_THROW(std::logic_error, "Not support more than one continous level of FLD control"); } case ProductionSpecification::LRAT: { double guide_rate = 0; if (phase_usage.phase_used[BlackoilPhases::Liquid]) { const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid]; const double potential_oil = well_potentials[np * w + oil_index]; guide_rate += potential_oil; } if (phase_usage.phase_used[BlackoilPhases::Aqua]) { const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua]; const double potential_water = well_potentials[np * w + water_index]; guide_rate += potential_water; } // not sure if no water and no oil, what will happen here, zero guide_rate? well_node.prodSpec().guide_rate_ = guide_rate; well_node.prodSpec().guide_rate_type_ = ProductionSpecification::LIQ; break; } case ProductionSpecification::NONE: { // Group control is not in use for this group. break; } default: OPM_THROW(std::logic_error, "Not supported control_mode for guide rate computed" << " from well potentials: " << ProductionSpecification::toString(group->prodSpec().control_mode_) ); } } else if (well_type == INJECTOR) { // The guide rates is calculated based on the group injector type switch (group->injSpec().injector_type_) { case InjectionSpecification::WATER: { if (!phase_usage.phase_used[BlackoilPhases::Aqua]) { OPM_THROW(std::runtime_error, "Water phase not used, yet found water injecting well."); } const int water_index = phase_usage.phase_pos[BlackoilPhases::Aqua]; well_node.injSpec().guide_rate_ = well_potentials[np * w + water_index]; // Guide rates applies to the phase that the well is injecting i.e water well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT; break; } case InjectionSpecification::OIL: { if (!phase_usage.phase_used[BlackoilPhases::Liquid]) { OPM_THROW(std::runtime_error, "Oil phase not used, yet found oil injecting well."); } const int oil_index = phase_usage.phase_pos[BlackoilPhases::Liquid]; well_node.injSpec().guide_rate_ = well_potentials[np * w + oil_index]; // Guide rates applies to the phase that the well is injecting i.e. oil well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT; break; } case InjectionSpecification::GAS: { if (!phase_usage.phase_used[BlackoilPhases::Vapour]) { OPM_THROW(std::runtime_error, "Gas phase not used, yet found gas injecting well."); } const int gas_index = phase_usage.phase_pos[BlackoilPhases::Vapour]; well_node.injSpec().guide_rate_ = well_potentials[np * w + gas_index]; // Guide rates applies to the phase that the well is injecting i.e gas well_node.injSpec().guide_rate_type_ = InjectionSpecification::RAT; break; } default: OPM_THROW(std::logic_error, "Not supported injector type for guide rate computed" << " from well potentials: " << InjectionSpecification::toString(group->injSpec().injector_type_) ); } } else { // neither injector nor producer OPM_THROW(std::logic_error, "Expected well type to be either INJECTOR or PRODUCER for well " << well_node.name() ); } } // end of if (well_node.getParent() != nullptr) } // end of for (int w = 0; w < nw; ++w) } bool WellCollection::requireWellPotentials() const { for (const auto& well_node : leaf_nodes_) { if (well_node->isGuideRateWellPotential()) { return true; } } return false; } }