/* Copyright 2014 SINTEF ICT, Applied Mathematics. Copyright 2014 STATOIL ASA. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // A debugging utility. #define DUMP(foo) \ do { \ std::cout << "==========================================\n" \ << #foo ":\n" \ << collapseJacs(foo) << std::endl; \ } while (0) namespace Opm { typedef AutoDiffBlock ADB; typedef ADB::V V; typedef ADB::M M; typedef Eigen::Array DataBlock; namespace { std::vector buildAllCells(const int nc) { std::vector all_cells(nc); for (int c = 0; c < nc; ++c) { all_cells[c] = c; } return all_cells; } template Eigen::SparseMatrix gravityOperator(const UnstructuredGrid& grid, const HelperOps& ops , const GeoProps& geo ) { const int nc = grid.number_of_cells; std::vector f2hf(2 * grid.number_of_faces, -1); for (int c = 0, i = 0; c < nc; ++c) { for (; i < grid.cell_facepos[c + 1]; ++i) { const int f = grid.cell_faces[ i ]; const int p = 0 + (grid.face_cells[2*f + 0] != c); f2hf[2*f + p] = i; } } typedef AutoDiffBlock::V V; const V& gpot = geo.gravityPotential(); const V& trans = geo.transmissibility(); const HelperOps::IFaces::Index ni = ops.internal_faces.size(); typedef Eigen::Triplet Tri; std::vector grav; grav.reserve(2 * ni); for (HelperOps::IFaces::Index i = 0; i < ni; ++i) { const int f = ops.internal_faces[ i ]; const int c1 = grid.face_cells[2*f + 0]; const int c2 = grid.face_cells[2*f + 1]; assert ((c1 >= 0) && (c2 >= 0)); const double dG1 = gpot[ f2hf[2*f + 0] ]; const double dG2 = gpot[ f2hf[2*f + 1] ]; const double t = trans[ f ]; grav.push_back(Tri(i, c1, t * dG1)); grav.push_back(Tri(i, c2, - t * dG2)); } Eigen::SparseMatrix G(ni, nc); G.setFromTriplets(grav.begin(), grav.end()); return G; } V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav) { const int nw = wells.number_of_wells; const int nperf = wells.well_connpos[nw]; const int dim = grid.dimensions; V wdp = V::Zero(nperf,1); assert(wdp.size() == rho.size()); // Main loop, iterate over all perforations, // using the following formula: // wdp(perf) = g*(perf_z - well_ref_z)*rho(perf) // where the total density rho(perf) is taken to be // sum_p (rho_p*saturation_p) in the perforation cell. // [although this is computed on the outside of this function]. for (int w = 0; w < nw; ++w) { const double ref_depth = wells.depth_ref[w]; for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) { const int cell = wells.well_cells[j]; const double cell_depth = grid.cell_centroids[dim * cell + dim - 1]; wdp[j] = rho[j]*grav*(cell_depth - ref_depth); } } return wdp; } } // Anonymous namespace FullyImplicitCompressiblePolymerSolver:: FullyImplicitCompressiblePolymerSolver(const UnstructuredGrid& grid, const BlackoilPropsAdFromDeck& fluid, const DerivedGeology& geo , const RockCompressibility* rock_comp_props, const PolymerPropsAd& polymer_props_ad, const Wells& wells, const NewtonIterationBlackoilInterface& linsolver) : grid_ (grid) , fluid_ (fluid) , geo_ (geo) , rock_comp_props_(rock_comp_props) , polymer_props_ad_(polymer_props_ad) , wells_ (wells) , linsolver_ (linsolver) , cells_ (buildAllCells(grid.number_of_cells)) , ops_ (grid) , wops_ (wells) , grav_ (gravityOperator(grid_, ops_, geo_)) , cmax_(V::Zero(grid.number_of_cells)) , phaseCondition_ (grid.number_of_cells) , sd_ (fluid.numPhases() + 1) , residual_ ( { std::vector(fluid.numPhases() + 1, ADB::null()), ADB::null(), ADB::null(), { 1.1169, 1.0031, 0.0031, 1.0 }, false } ) // default scaling , linearizations_(0) { } int FullyImplicitCompressiblePolymerSolver:: step(const SimulatorTimerInterface& timer, PolymerBlackoilState& x , WellStateFullyImplicitBlackoilPolymer& xw) { const std::vector& polymer_inflow = xw.polymerInflow(); const double dt = timer.currentStepLength(); // Initial max concentration of this time step from PolymerBlackoilState. cmax_ = Eigen::Map(&x.getCellData( x.CMAX )[0], Opm::AutoDiffGrid::numCells(grid_)); const SolutionState state = constantState(x, xw); computeAccum(state, 0); const double atol = 1.0e-12; const double rtol = 5.0e-8; const int maxit = 15; assemble(dt, x, xw, polymer_inflow); const double r0 = residualNorm(); const double r_polymer = residual_.material_balance_eq[2].value().matrix().lpNorm(); int it = 0; // this solver does not solve well equations first. wellIterations_ = 0; std::cout << "\nIteration Residual Polymer Res\n" << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r0 << std::setprecision(9) << std::setw(18) << r_polymer << std::endl; bool resTooLarge = r0 > atol; while (resTooLarge && (it < maxit)) { const V dx = solveJacobianSystem(); // update the number of linear iterations used. linearIterations_ += linsolver_.iterations(); updateState(dx, x, xw); assemble(dt, x, xw, polymer_inflow); const double r = residualNorm(); const double rr_polymer = residual_.material_balance_eq[2].value().matrix().lpNorm(); resTooLarge = (r > atol) && (r > rtol*r0); it += 1; linearizations_ += 1; newtonIterations_ += 1; std::cout << std::setw(9) << it << std::setprecision(9) << std::setw(18) << r << std::setprecision(9) << std::setw(18) << rr_polymer << std::endl; } if (resTooLarge) { std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n"; return -1; // OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations."); } // Update max concentration. computeCmax(x); return it; } int FullyImplicitCompressiblePolymerSolver::linearizations() const { return linearizations_; } int FullyImplicitCompressiblePolymerSolver::nonlinearIterations() const { return newtonIterations_; } int FullyImplicitCompressiblePolymerSolver::linearIterations() const { return linearIterations_; } int FullyImplicitCompressiblePolymerSolver::wellIterations() const { return wellIterations_; } FullyImplicitCompressiblePolymerSolver::ReservoirResidualQuant::ReservoirResidualQuant() : accum(2, ADB::null()) , mflux( ADB::null()) , b ( ADB::null()) , mu ( ADB::null()) , rho ( ADB::null()) , kr ( ADB::null()) , head ( ADB::null()) , mob ( ADB::null()) , ads (2, ADB::null()) { } FullyImplicitCompressiblePolymerSolver::SolutionState::SolutionState(const int np) : pressure ( ADB::null()) , temperature( ADB::null()) , saturation(np, ADB::null()) , concentration( ADB::null()) , qs ( ADB::null()) , bhp ( ADB::null()) { } FullyImplicitCompressiblePolymerSolver:: WellOps::WellOps(const Wells& wells) : w2p(wells.well_connpos[ wells.number_of_wells ], wells.number_of_wells) , p2w(wells.number_of_wells, wells.well_connpos[ wells.number_of_wells ]) { const int nw = wells.number_of_wells; const int* const wpos = wells.well_connpos; typedef Eigen::Triplet Tri; std::vector scatter, gather; scatter.reserve(wpos[nw]); gather .reserve(wpos[nw]); for (int w = 0, i = 0; w < nw; ++w) { for (; i < wpos[ w + 1 ]; ++i) { scatter.push_back(Tri(i, w, 1.0)); gather .push_back(Tri(w, i, 1.0)); } } w2p.setFromTriplets(scatter.begin(), scatter.end()); p2w.setFromTriplets(gather .begin(), gather .end()); } FullyImplicitCompressiblePolymerSolver::SolutionState FullyImplicitCompressiblePolymerSolver::constantState(const PolymerBlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); // The block pattern assumes the following primary variables: // pressure // water saturation (if water present) // polymer concentration // well rates per active phase and well // well bottom-hole pressure // Note that oil is assumed to always be present, but is never // a primary variable. std::vector bpat(np + 1, nc); bpat.push_back(xw.bhp().size() * np); bpat.push_back(xw.bhp().size()); SolutionState state(np); // Pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); state.pressure = ADB::constant(p, bpat); // Temperature. const V T = Eigen::Map(& x.temperature()[0], nc, 1); state.temperature = ADB::constant(T); // Saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); V so = V::Ones(nc, 1); const V sw = s.col(0); so -= sw; state.saturation[0] = ADB::constant(sw, bpat); state.saturation[1] = ADB::constant(so, bpat); // Concentration { auto& concentration = x.getCellData( x.CONCENTRATION ); assert(concentration.empty()); const V c = Eigen::Map(concentration.data(), nc); // Do not understand: //concentration = ADB::constant(c); // Old code based on concentraton() method had the statement: // // state.concentration = ADB::constant(c) // // This looks like it was a method assignment - how did it even compile? } // Well rates. assert (not xw.wellRates().empty()); // Need to reshuffle well rates, from ordered by wells, then phase, // to ordered by phase, then wells. const int nw = wells_.number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw * np); state.qs = ADB::constant(qs, bpat); // Well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); state.bhp = ADB::constant(bhp, bpat); return state; } FullyImplicitCompressiblePolymerSolver::SolutionState FullyImplicitCompressiblePolymerSolver::variableState(const PolymerBlackoilState& x, const WellStateFullyImplicitBlackoil& xw) { const int nc = grid_.number_of_cells; const int np = x.numPhases(); std::vector vars0; // Initial pressure. assert (not x.pressure().empty()); const V p = Eigen::Map(& x.pressure()[0], nc, 1); vars0.push_back(p); // Initial saturation. assert (not x.saturation().empty()); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); const V sw0 = s.col(0); vars0.push_back(sw0); // Initial concentration. { auto& concentration = x.getCellData( x.CONCENTRATION ); assert (not concentration.empty()); const V c = Eigen::Map(concentration.data() , nc); vars0.push_back(c); } // Initial well rates. assert (not xw.wellRates().empty()); // Need to reshuffle well rates, from ordered by wells, then phase, // to ordered by phase, then wells. const int nw = wells_.number_of_wells; // The transpose() below switches the ordering. const DataBlock wrates = Eigen::Map(& xw.wellRates()[0], nw, np).transpose(); const V qs = Eigen::Map(wrates.data(), nw*np); vars0.push_back(qs); // Initial well bottom-hole pressure. assert (not xw.bhp().empty()); const V bhp = Eigen::Map(& xw.bhp()[0], xw.bhp().size()); vars0.push_back(bhp); std::vector vars = ADB::variables(vars0); SolutionState state(np); // Pressure. int nextvar = 0; state.pressure = vars[ nextvar++ ]; // Temperature. (this is always a constant so far) const V T = Eigen::Map(& x.temperature()[0], nc, 1); state.temperature = ADB::constant(T); // Saturation. const std::vector& bpat = vars[0].blockPattern(); { ADB so = ADB::constant(V::Ones(nc, 1), bpat); ADB& sw = vars[ nextvar++ ]; state.saturation[0] = sw; so = so - sw; state.saturation[1] = so; } // Concentration. state.concentration = vars[nextvar++]; // Qs. state.qs = vars[ nextvar++ ]; // Bhp. state.bhp = vars[ nextvar++ ]; assert(nextvar == int(vars.size())); return state; } void FullyImplicitCompressiblePolymerSolver::computeAccum(const SolutionState& state, const int aix ) { const ADB& press = state.pressure; const ADB& temp = state.temperature; const std::vector& sat = state.saturation; const ADB& c = state.concentration; const std::vector cond = phaseCondition(); std::vector pressure = computePressures(state); const ADB pv_mult = poroMult(press); for (int phase = 0; phase < 2; ++phase) { sd_.rq[phase].b = fluidReciprocFVF(phase, pressure[phase], temp, cond, cells_); } sd_.rq[0].accum[aix] = pv_mult * sd_.rq[0].b * sat[0]; sd_.rq[1].accum[aix] = pv_mult * sd_.rq[1].b * sat[1]; const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern()); const ADB ads = polymer_props_ad_.adsorption(state.concentration, cmax); const double rho_rock = polymer_props_ad_.rockDensity(); const V phi = Eigen::Map(&fluid_.porosity()[0], grid_.number_of_cells, 1); const double dead_pore_vol = polymer_props_ad_.deadPoreVol(); sd_.rq[2].accum[aix] = pv_mult * sd_.rq[0].b * sat[0] * c * (1. - dead_pore_vol) + pv_mult * rho_rock * (1. - phi) / phi * ads; } std::vector > FullyImplicitCompressiblePolymerSolver::computeFluidInPlace(const PolymerBlackoilState& x, const std::vector& fipnum) { const int np = x.numPhases(); const int nc = grid_.number_of_cells; SolutionState state(np); state.pressure = ADB::constant(Eigen::Map(& x.pressure()[0], nc, 1)); state.temperature = ADB::constant(Eigen::Map(& x.temperature()[0], nc, 1)); const DataBlock s = Eigen::Map(& x.saturation()[0], nc, np); for (int phase = 0; phase < np; ++phase) { state.saturation[phase] = ADB::constant(s.col(phase)); } const ADB& press = state.pressure; const ADB& temp = state.temperature; const std::vector& sat = state.saturation; const std::vector cond = phaseCondition(); std::vector pressure = computePressures(state); const ADB pv_mult = poroMult(press); const V& pv = geo_.poreVolume(); std::vector fip(5, V::Zero(nc)); for (int phase = 0; phase < 2; ++phase) { const ADB& b = fluidReciprocFVF(phase, pressure[phase], temp, cond, cells_); fip[phase] = (pv_mult * b * sat[phase] * pv).value(); } const int dims = *std::max_element(fipnum.begin(), fipnum.end()); std::vector > values(dims); for (int i=0; i < dims; ++i) { values[i].resize(7, 0.0); } V hcpv = V::Zero(nc); V pres = V::Zero(nc); for (int i = 0; i < 5; ++i) { for (int c = 0; c < nc; ++c) { if (fipnum[c] != 0) { values[fipnum[c]-1][i] += fip[i][c]; } } } // compute PAV and PORV or every regions. for (int c = 0; c < nc; ++c) { if (fipnum[c] != 0) { hcpv[fipnum[c]-1] += pv[c] * s.col(Oil)[c]; pres[fipnum[c]-1] += pv[c] * state.pressure.value()[c]; values[fipnum[c]-1][5] += pv[c]; values[fipnum[c]-1][6] += pv[c] * state.pressure.value()[c] * s.col(Oil)[c]; } } for (int reg = 0; reg < dims; ++reg) { if (hcpv[reg] != 0) { values[reg][6] /= hcpv[reg]; } else { values[reg][6] = pres[reg] / values[reg][5]; } } // Fluid in place is not implemented in this class. // See BlackoilModelBase::computeFluidInPlace(...) for how it's implemented there // FIXME: This following code has not been tested. if (sd_.fip[0].size() == 0) { OpmLog::warning("NOT_COMPUTING_FIP", "Computing fluid in place is not implemented for summary files."); for (int i = 0; i < 7; ++i) { sd_.fip[i] = V::Zero(nc); } } return values; } void FullyImplicitCompressiblePolymerSolver:: computeCmax(PolymerBlackoilState& state) { const int nc = grid_.number_of_cells; V tmp = V::Zero(nc); const auto& concentration = state.getCellData( state.CONCENTRATION ); auto& cmax = state.getCellData( state.CMAX ); for (int i = 0; i < nc; ++i) { tmp[i] = std::max(cmax[i], concentration[i]); } std::copy(&tmp[0], &tmp[0] + nc, cmax.begin()); } void FullyImplicitCompressiblePolymerSolver:: assemble(const double dt, const PolymerBlackoilState& x, const WellStateFullyImplicitBlackoil& xw, const std::vector& polymer_inflow) { // Create the primary variables. // const SolutionState state = variableState(x, xw); const V pvdt = geo_.poreVolume() / dt; // -------- Mass balance equations -------- // Compute b_p and the accumulation term b_p*s_p for each phase, // except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o. // These quantities are stored in sd_.rq[phase].accum[1]. // The corresponding accumulation terms from the start of // the timestep (b^0_p*s^0_p etc.) were already computed // in step() and stored in sd_.rq[phase].accum[0]. computeAccum(state, 1); // Set up the common parts of the mass balance equations // for each active phase. const V trans = subset(geo_.transmissibility(), ops_.internal_faces); { const std::vector kr = computeRelPerm(state); const auto& pu = fluid_.phaseUsage(); for (int phaseIdx=0; phaseIdx < fluid_.numPhases(); ++phaseIdx) { sd_.rq[phaseIdx].kr = kr[pu.phase_pos[phaseIdx]]; } } const ADB cmax = ADB::constant(cmax_, state.concentration.blockPattern()); const ADB krw_eff = polymer_props_ad_.effectiveRelPerm(state.concentration, cmax, sd_.rq[0].kr); const ADB mc = computeMc(state); computeMassFlux(trans, mc, sd_.rq[1].kr, krw_eff, state); residual_.material_balance_eq[0] = pvdt*(sd_.rq[0].accum[1] - sd_.rq[0].accum[0]) + ops_.div*sd_.rq[0].mflux; residual_.material_balance_eq[1] = pvdt*(sd_.rq[1].accum[1] - sd_.rq[1].accum[0]) + ops_.div*sd_.rq[1].mflux; residual_.material_balance_eq[2] = pvdt*(sd_.rq[2].accum[1] - sd_.rq[2].accum[0]) //+ cell / dt * (sd_.rq[2].ads[1] - sd_.rq[2].ads[0]) + ops_.div*sd_.rq[2].mflux; // -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations -------- // Add the extra (flux) terms to the gas mass balance equations // from gas dissolved in the oil phase. // The extra terms in the accumulation part of the equation are already handled. // -------- Well equation, and well contributions to the mass balance equations -------- // Contribution to mass balance will have to wait. const int nc = grid_.number_of_cells; const int np = wells_.number_of_phases; const int nw = wells_.number_of_wells; const int nperf = wells_.well_connpos[nw]; const std::vector well_cells(wells_.well_cells, wells_.well_cells + nperf); const V transw = Eigen::Map(wells_.WI, nperf); const ADB& bhp = state.bhp; // Extract variables for perforation cell pressures // and corresponding perforation well pressures. const ADB p_perfcell = subset(state.pressure, well_cells); // Finally construct well perforation pressures and well flows. // Compute well pressure differentials. // Construct pressure difference vector for wells. const int dim = grid_.dimensions; const double* g = geo_.gravity(); if (g) { // Guard against gravity in anything but last dimension. for (int dd = 0; dd < dim - 1; ++dd) { assert(g[dd] == 0.0); } } ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern()); std::vector press = computePressures(state); const ADB& temp = state.temperature; const std::vector cond = phaseCondition(); for (int phase = 0; phase < 2; ++phase) { const ADB cell_rho = fluidDensity(phase, press[phase], temp, cond, cells_); cell_rho_total += state.saturation[phase] * cell_rho; } ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern()); assert(np == wells_.number_of_phases); const DataBlock compi = Eigen::Map(wells_.comp_frac, nw, np); for (int phase = 0; phase < 2; ++phase) { const ADB cell_rho = fluidDensity(phase, press[phase], temp, cond, cells_); const V fraction = compi.col(phase); inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells); } const V rho_perf_cell = subset(cell_rho_total, well_cells).value(); const V rho_perf_well = inj_rho_total.value(); V prodperfs = V::Constant(nperf, -1.0); for (int w = 0; w < nw; ++w) { if (wells_.type[w] == PRODUCER) { std::fill(prodperfs.data() + wells_.well_connpos[w], prodperfs.data() + wells_.well_connpos[w+1], 1.0); } } const Selector producer(prodperfs); const V rho_perf = producer.select(rho_perf_cell, rho_perf_well); const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0); const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp; const ADB nkgradp_well = transw * (p_perfcell - p_perfwell); // DUMP(nkgradp_well); const Selector cell_to_well_selector(nkgradp_well.value()); ADB well_rates_all = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern()); ADB perf_total_mob = subset(sd_.rq[0].mob, well_cells) + subset(sd_.rq[1].mob, well_cells); std::vector well_contribs(np, ADB::null()); std::vector well_perf_rates(np, ADB::null()); for (int phase = 0; phase < np; ++phase) { const ADB& cell_b = sd_.rq[phase].b; const ADB perf_b = subset(cell_b, well_cells); const ADB& cell_mob = sd_.rq[phase].mob; const V well_fraction = compi.col(phase); // Using total mobilities for all phases for injection. const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob; const ADB perf_mob = producer.select(subset(cell_mob, well_cells), perf_mob_injector); const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations. well_perf_rates[phase] = (perf_flux * perf_b); const ADB well_rates = wops_.p2w * well_perf_rates[phase]; well_rates_all += superset(well_rates, Span(nw, 1, phase*nw), nw*np); // const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc); well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc); // DUMP(well_contribs[phase]); residual_.material_balance_eq[phase] += well_contribs[phase]; } // well rates contribs to polymer mass balance eqn. // for injection wells. const V polyin = Eigen::Map(& polymer_inflow[0], nc); const V poly_in_perf = subset(polyin, well_cells); const V poly_mc_cell = subset(mc, well_cells).value(); const V poly_in_c = poly_in_perf;// * poly_mc_cell; const V poly_mc = producer.select(poly_mc_cell, poly_in_c); residual_.material_balance_eq[2] += superset(well_perf_rates[0] * poly_mc, well_cells, nc); // Set the well flux equation residual_.well_flux_eq = state.qs + well_rates_all; // DUMP(residual_.well_flux_eq); // Handling BHP and SURFACE_RATE wells. V bhp_targets(nw); V rate_targets(nw); Eigen::SparseMatrix rate_distr(nw, np*nw); for (int w = 0; w < nw; ++w) { const WellControls* wc = wells_.ctrls[w]; if (well_controls_get_current_type(wc) == BHP) { bhp_targets[w] = well_controls_get_current_target(wc); rate_targets[w] = -1e100; } else if (well_controls_get_current_type(wc) == SURFACE_RATE) { bhp_targets[w] = -1e100; rate_targets[w] = well_controls_get_current_target(wc); { const double* distr = well_controls_get_current_distr(wc); for (int phase = 0; phase < np; ++phase) { rate_distr.insert(w, phase*nw + w) = distr[phase]; } } } else { OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls."); } } const ADB bhp_residual = bhp - bhp_targets; const ADB rate_residual = rate_distr * state.qs - rate_targets; // Choose bhp residual for positive bhp targets. Selector bhp_selector(bhp_targets); residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual); // DUMP(residual_.well_eq); } V FullyImplicitCompressiblePolymerSolver::solveJacobianSystem() const { return linsolver_.computeNewtonIncrement(residual_); } namespace { struct Chop01 { double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); } }; } void FullyImplicitCompressiblePolymerSolver:: updateState(const V& dx, PolymerBlackoilState& state, WellStateFullyImplicitBlackoil& well_state) const { const int np = fluid_.numPhases(); const int nc = grid_.number_of_cells; const int nw = wells_.number_of_wells; const V one = V::Constant(nc, 1.0); const V zero = V::Zero(nc); // Extract parts of dx corresponding to each part. const V dp = subset(dx, Span(nc)); int varstart = nc; const V dsw =subset(dx, Span(nc, 1, varstart)); varstart += dsw.size(); const V dc = subset(dx, Span(nc, 1, varstart)); varstart += dc.size(); const V dqs = subset(dx, Span(np*nw, 1, varstart)); varstart += dqs.size(); const V dbhp = subset(dx, Span(nw, 1, varstart)); varstart += dbhp.size(); assert(varstart == dx.size()); // Pressure update. const double dpmaxrel = 0.8; const V p_old = Eigen::Map(&state.pressure()[0], nc, 1); const V absdpmax = dpmaxrel*p_old.abs(); const V dp_limited = sign(dp) * dp.abs().min(absdpmax); const V p = (p_old - dp_limited).max(zero); std::copy(&p[0], &p[0] + nc, state.pressure().begin()); // Saturation updates. const double dsmax = 0.3; const DataBlock s_old = Eigen::Map(&state.saturation()[0], nc, np); V so = one; const V sw_old = s_old.col(0); const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax); const V sw = (sw_old - dsw_limited).unaryExpr(Chop01()); so -= sw; for (int c = 0; c < nc; ++c) { state.saturation()[c*np] = sw[c]; state.saturation()[c*np + 1] = so[c]; } // Concentration updates. // const double dcmax = 0.3 * polymer_props_ad_.cMax(); // std::cout << "\n the max concentration: " << dcmax / 0.3 << std::endl; { auto& concentration = state.getCellData( state.CONCENTRATION ); const V c_old = Eigen::Map(concentration.data() , nc, 1); // const V dc_limited = sign(dc) * dc.abs().min(dcmax); // const V c = (c_old - dc_limited).max(zero);//unaryExpr(Chop02()); const V c = (c_old - dc).max(zero); std::copy(&c[0], &c[0] + nc, concentration.begin()); } // Qs update. // Since we need to update the wellrates, that are ordered by wells, // from dqs which are ordered by phase, the simplest is to compute // dwr, which is the data from dqs but ordered by wells. const DataBlock wwr = Eigen::Map(dqs.data(), np, nw).transpose(); const V dwr = Eigen::Map(wwr.data(), nw*np); const V wr_old = Eigen::Map(&well_state.wellRates()[0], nw*np); const V wr = wr_old - dwr; std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin()); // Bhp update. const V bhp_old = Eigen::Map(&well_state.bhp()[0], nw, 1); const V bhp = bhp_old - dbhp; std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin()); } std::vector FullyImplicitCompressiblePolymerSolver::computeRelPerm(const SolutionState& state) const { const int nc = grid_.number_of_cells; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const ADB sw = state.saturation[0]; const ADB so = state.saturation[1]; const ADB sg = null; return fluid_.relperm(sw, so, sg, cells_); } std::vector FullyImplicitCompressiblePolymerSolver:: computePressures(const SolutionState& state) const { const int nc = grid_.number_of_cells; const std::vector& bpat = state.pressure.blockPattern(); const ADB null = ADB::constant(V::Zero(nc, 1), bpat); const ADB sw = state.saturation[0]; const ADB so = state.saturation[1]; const ADB sg = null; // convert the pressure offsets to the capillary pressures std::vector pressure = fluid_.capPress(sw, so, sg, cells_); pressure[0] = pressure[0] - pressure[1]; // add the total pressure to the capillary pressures pressure[0] = state.pressure - pressure[0]; pressure[1] = state.pressure + pressure[1]; return pressure; } void FullyImplicitCompressiblePolymerSolver::computeMassFlux( const V& transi, const ADB& mc, const ADB& kro, const ADB& krw_eff, const SolutionState& state ) { const ADB tr_mult = transMult(state.pressure); const std::vector cond = phaseCondition(); std::vector press = computePressures(state); const ADB& temp = state.temperature; { const ADB mu_w = fluidViscosity(0, press[0], temp, cond, cells_); ADB inv_wat_eff_vis = polymer_props_ad_.effectiveInvWaterVisc(state.concentration, mu_w.value()); sd_.rq[0].mob = tr_mult * krw_eff * inv_wat_eff_vis; sd_.rq[2].mob = tr_mult * mc * krw_eff * inv_wat_eff_vis; const ADB mu_o = fluidViscosity(1, press[1], temp, cond, cells_); sd_.rq[1].mob = tr_mult * kro / mu_o; sd_.rq[0].mu = mu_w; sd_.rq[1].mu = mu_o; } for (int phase = 0; phase < 2; ++phase) { sd_.rq[phase].rho = fluidDensity(phase, press[phase], temp, cond, cells_); ADB& head = sd_.rq[phase].head; // compute gravity potensial using the face average as in eclipse and MRST const ADB rhoavg = ops_.caver * sd_.rq[phase].rho; const ADB dp = ops_.ngrad * press[phase] - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix())); head = transi*dp; UpwindSelector upwind(grid_, ops_, head.value()); const ADB& b = sd_.rq[phase].b; const ADB& mob = sd_.rq[phase].mob; sd_.rq[phase].mflux = upwind.select(b * mob) * head; } sd_.rq[2].b = sd_.rq[0].b; sd_.rq[2].head = sd_.rq[0].head; UpwindSelector upwind(grid_, ops_, sd_.rq[2].head.value()); sd_.rq[2].mflux = upwind.select(sd_.rq[2].b * sd_.rq[2].mob) * sd_.rq[2].head; } double FullyImplicitCompressiblePolymerSolver::residualNorm() const { double r = 0; for (std::vector::const_iterator b = residual_.material_balance_eq.begin(), e = residual_.material_balance_eq.end(); b != e; ++b) { r = std::max(r, (*b).value().matrix().lpNorm()); } r = std::max(r, residual_.well_flux_eq.value().matrix().lpNorm()); r = std::max(r, residual_.well_eq.value().matrix().lpNorm()); return r; } ADB FullyImplicitCompressiblePolymerSolver::fluidViscosity(const int phase, const ADB& p , const ADB& T , const std::vector& cond, const std::vector& cells) const { const ADB null = ADB::constant(V::Zero(grid_.number_of_cells, 1), p.blockPattern()); switch (phase) { case Water: return fluid_.muWat(p, T, cells); case Oil: { return fluid_.muOil(p, T, null, cond, cells); } default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } ADB FullyImplicitCompressiblePolymerSolver::fluidReciprocFVF(const int phase, const ADB& p , const ADB& T , const std::vector& cond, const std::vector& cells) const { const ADB null = ADB::constant(V::Zero(grid_.number_of_cells, 1), p.blockPattern()); switch (phase) { case Water: return fluid_.bWat(p, T, cells); case Oil: { return fluid_.bOil(p, T, null, cond, cells); } default: OPM_THROW(std::runtime_error, "Unknown phase index " << phase); } } ADB FullyImplicitCompressiblePolymerSolver::fluidDensity(const int phase, const ADB& p , const ADB& T , const std::vector& cond, const std::vector& cells) const { const V rhos = fluid_.surfaceDensity(phase, cells); const ADB b = fluidReciprocFVF(phase, p, T, cond, cells); const ADB rho = rhos * b; return rho; } // here mc means m(c) * c. ADB FullyImplicitCompressiblePolymerSolver::computeMc(const SolutionState& state) const { ADB c = state.concentration; return polymer_props_ad_.polymerWaterVelocityRatio(c); } ADB FullyImplicitCompressiblePolymerSolver::poroMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V pm(n); V dpm(n); for (int i = 0; i < n; ++i) { pm[i] = rock_comp_props_->poroMult(p.value()[i]); dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]); } ADB::M dpm_diag(dpm.matrix().asDiagonal()); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dpm_diag * p.derivative()[block]; } return ADB::function(std::move(pm), std::move(jacs)); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } ADB FullyImplicitCompressiblePolymerSolver::transMult(const ADB& p) const { const int n = p.size(); if (rock_comp_props_ && rock_comp_props_->isActive()) { V tm(n); V dtm(n); for (int i = 0; i < n; ++i) { tm[i] = rock_comp_props_->transMult(p.value()[i]); dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]); } ADB::M dtm_diag(dtm.matrix().asDiagonal()); const int num_blocks = p.numBlocks(); std::vector jacs(num_blocks); for (int block = 0; block < num_blocks; ++block) { jacs[block] = dtm_diag * p.derivative()[block]; } return ADB::function(std::move(tm), std::move(jacs)); } else { return ADB::constant(V::Constant(n, 1.0), p.blockPattern()); } } void FullyImplicitCompressiblePolymerSolver::classifyCondition(const PolymerBlackoilState& state) { const int nc = grid_.number_of_cells; const DataBlock s = Eigen::Map(& state.saturation()[0], nc, 2); const V so = s.col(1); for (V::Index c = 0, e = so.size(); c != e; ++c) { phaseCondition_[c].setFreeWater(); if (so[c] > 0) { phaseCondition_[c].setFreeOil(); } } } const FullyImplicitCompressiblePolymerSolver& FullyImplicitCompressiblePolymerSolver::model() const { return *this; } namespace detail { template double euclidianNormSquared(RAIter it, const RAIter end) { double product = 0.0 ; for( ; it != end; ++it ) { product += ( *it * *it ); } return product; } } // namespace detail double FullyImplicitCompressiblePolymerSolver:: relativeChange(const PolymerBlackoilState& previous, const PolymerBlackoilState& current ) const { std::vector< double > p0 ( previous.pressure() ); std::vector< double > sat0( previous.saturation() ); const std::size_t pSize = p0.size(); const std::size_t satSize = sat0.size(); // compute u^n - u^n+1 for( std::size_t i=0; i 0.0 ) { return normDiff / normNewState; } else { return 0.0; } } } //namespace Opm