/* Copyright 2013 SINTEF ICT, Applied Mathematics. Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3) #include #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Unused parameters: --------------------\n"; param.displayUsage(); std::cout << "----------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) try { Dune::MPIHelper& helper= Dune::MPIHelper::instance(argc, argv); using namespace Opm; std::cout << "\n================ Test program for fully implicit three-phase black-oil flow ===============\n\n"; parameter::ParameterGroup param(argc, argv, false); std::cout << "--------------- Reading parameters ---------------" << std::endl; // If we have a "deck_filename", grid and props will be read from that. bool use_deck = param.has("deck_filename"); if (!use_deck) { OPM_THROW(std::runtime_error, "This program must be run with an input deck. " "Specify the deck with deck_filename=deckname.data (for example)."); } std::shared_ptr grid; std::shared_ptr props; std::shared_ptr new_props; std::shared_ptr rock_comp; BlackoilState state; // bool check_well_controls = false; // int max_well_control_iterations = 0; double gravity[3] = { 0.0 }; std::string deck_filename = param.get("deck_filename"); Opm::ParserPtr newParser(new Opm::Parser() ); Opm::DeckConstPtr newParserDeck = newParser->parseFile( deck_filename ); // Grid init grid.reset(new Dune::CpGrid()); { grdecl g = {}; GridManager::createGrdecl(newParserDeck, g); grid->processEclipseFormat(g, 2e-12, false); } Opm::EclipseWriter outputWriter(param, newParserDeck, Opm::UgGridHelpers::numCells(*grid), Opm::UgGridHelpers::globalCell(*grid), Opm::UgGridHelpers::cartDims(*grid), Opm::UgGridHelpers::dimensions(*grid)); // Rock and fluid init props.reset(new BlackoilPropertiesFromDeck(newParserDeck, Opm::UgGridHelpers::numCells(*grid), Opm::UgGridHelpers::globalCell(*grid), Opm::UgGridHelpers::cartDims(*grid), Opm::UgGridHelpers::beginCellCentroids(*grid), Opm::UgGridHelpers::dimensions(*grid), param)); new_props.reset(new BlackoilPropsAdFromDeck(newParserDeck, *grid)); // check_well_controls = param.getDefault("check_well_controls", false); // max_well_control_iterations = param.getDefault("max_well_control_iterations", 10); // Rock compressibility. rock_comp.reset(new RockCompressibility(newParserDeck)); // Gravity. gravity[2] = newParserDeck->hasKeyword("NOGRAV") ? 0.0 : unit::gravity; // Init state variables (saturation and pressure). if (param.has("init_saturation")) { initStateBasic(grid->numCells(), &(grid->globalCell())[0], &(grid->logicalCartesianSize()[0]), grid->numFaces(), AutoDiffGrid::faceCells(*grid), grid->beginFaceCentroids(), grid->beginCellCentroids(), Dune::CpGrid::dimension, *props, param, gravity[2], state); initBlackoilSurfvol(grid->numCells(), *props, state); enum { Oil = BlackoilPhases::Liquid, Gas = BlackoilPhases::Vapour }; const PhaseUsage pu = props->phaseUsage(); if (pu.phase_used[Oil] && pu.phase_used[Gas]) { const int np = props->numPhases(); const int nc = grid->numCells(); for (int c = 0; c < nc; ++c) { state.gasoilratio()[c] = state.surfacevol()[c*np + pu.phase_pos[Gas]] / state.surfacevol()[c*np + pu.phase_pos[Oil]]; } } } else { initBlackoilStateFromDeck(grid->numCells(), &(grid->globalCell())[0], grid->numFaces(), AutoDiffGrid::faceCells(*grid), grid->beginFaceCentroids(), grid->beginCellCentroids(), Dune::CpGrid::dimension, *props, newParserDeck, gravity[2], state); } bool use_gravity = (gravity[0] != 0.0 || gravity[1] != 0.0 || gravity[2] != 0.0); const double *grav = use_gravity ? &gravity[0] : 0; // Linear solver. LinearSolverFactory linsolver(param); // Write parameters used for later reference. bool output = param.getDefault("output", true); std::ofstream outStream; std::string output_dir; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } std::string filename = output_dir + "/timing.param"; outStream.open(filename.c_str(), std::fstream::trunc | std::fstream::out); // open file to clean it. The file is appended to in SimulatorTwophase filename = output_dir + "/step_timing.param"; std::fstream step_os(filename.c_str(), std::fstream::trunc | std::fstream::out); step_os.close(); param.writeParam(output_dir + "/simulation.param"); } std::cout << "\n\n================ Starting main simulation loop ===============\n" << std::flush; WellStateFullyImplicitBlackoil well_state; Opm::TimeMapPtr timeMap(new Opm::TimeMap(newParserDeck)); SimulatorTimer simtimer; std::shared_ptr eclipseState(new EclipseState(newParserDeck)); // initialize variables simtimer.init(timeMap); SimulatorReport fullReport; for (size_t reportStepIdx = 0; reportStepIdx < timeMap->numTimesteps(); ++reportStepIdx) { // Report on start of a report step. std::cout << "\n" << "---------------------------------------------------------------\n" << "-------------- Starting report step " << reportStepIdx << " --------------\n" << "---------------------------------------------------------------\n" << "\n"; // Create new wells, well_state WellsManager wells(eclipseState, reportStepIdx, Opm::UgGridHelpers::numCells(*grid), Opm::UgGridHelpers::globalCell(*grid), Opm::UgGridHelpers::cartDims(*grid), Opm::UgGridHelpers::dimensions(*grid), Opm::UgGridHelpers::beginCellCentroids(*grid), Opm::UgGridHelpers::cell2Faces(*grid), Opm::UgGridHelpers::beginFaceCentroids(*grid), props->permeability()); if (reportStepIdx == 0) { // @@@ HACK: we should really make a new well state and // properly transfer old well state to it every epoch, // since number of wells may change etc. well_state.init(wells.c_wells(), state); } simtimer.setCurrentStepNum(reportStepIdx); if (reportStepIdx == 0) { outputWriter.writeInit(simtimer); outputWriter.writeTimeStep(simtimer, state, well_state.basicWellState()); } // Create and run simulator. SimulatorFullyImplicitBlackoil simulator(param, *grid, *new_props, rock_comp->isActive() ? rock_comp.get() : 0, wells, linsolver, grav); SimulatorReport episodeReport = simulator.run(simtimer, state, well_state); ++simtimer; outputWriter.writeTimeStep(simtimer, state, well_state.basicWellState()); fullReport += episodeReport; } std::cout << "\n\n================ End of simulation ===============\n\n"; fullReport.report(std::cout); if (output) { std::string filename = output_dir + "/walltime.param"; std::fstream tot_os(filename.c_str(),std::fstream::trunc | std::fstream::out); fullReport.reportParam(tot_os); warnIfUnusedParams(param); } } catch (const std::exception &e) { std::cerr << "Program threw an exception: " << e.what() << "\n"; throw; }