/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace
{
void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param)
{
if (param.anyUnused()) {
std::cout << "-------------------- Warning: unused parameters: --------------------\n";
param.displayUsage();
std::cout << "-------------------------------------------------------------------------" << std::endl;
}
}
} // anon namespace
// ----------------- Main program -----------------
int
main(int argc, char** argv)
{
using namespace Opm;
parameter::ParameterGroup param(argc, argv, false);
// Read grid.
GridManager grid_manager(param.get("grid_filename"));
const UnstructuredGrid& grid = *grid_manager.c_grid();
// Read porosity, compute pore volume.
std::vector porevol;
{
std::ifstream poro_stream(param.get("poro_filename").c_str());
std::istream_iterator beg(poro_stream);
std::istream_iterator end;
porevol.assign(beg, end); // Now contains poro.
if (int(porevol.size()) != grid.number_of_cells) {
OPM_THROW(std::runtime_error, "Size of porosity field differs from number of cells.");
}
for (int i = 0; i < grid.number_of_cells; ++i) {
porevol[i] *= grid.cell_volumes[i];
}
}
// Read flux.
std::vector flux;
{
std::ifstream flux_stream(param.get("flux_filename").c_str());
std::istream_iterator beg(flux_stream);
std::istream_iterator end;
flux.assign(beg, end);
if (int(flux.size()) != grid.number_of_faces) {
OPM_THROW(std::runtime_error, "Size of flux field differs from number of faces.");
}
}
// Read source terms.
std::vector src;
{
std::ifstream src_stream(param.get("src_filename").c_str());
std::istream_iterator beg(src_stream);
std::istream_iterator end;
src.assign(beg, end);
if (int(src.size()) != grid.number_of_cells) {
OPM_THROW(std::runtime_error, "Size of source term field differs from number of cells.");
}
}
const bool compute_tracer = param.getDefault("compute_tracer", false);
Opm::SparseTable tracerheads;
if (compute_tracer) {
std::ifstream tr_stream(param.get("tracerheads_filename").c_str());
int num_rows;
tr_stream >> num_rows;
for (int row = 0; row < num_rows; ++row) {
int row_size;
tr_stream >> row_size;
std::vector rowdata(row_size);
for (int elem = 0; elem < row_size; ++elem) {
tr_stream >> rowdata[elem];
}
tracerheads.appendRow(rowdata.begin(), rowdata.end());
}
}
// Choice of tof solver.
bool use_dg = param.getDefault("use_dg", false);
bool use_multidim_upwind = false;
// Need to initialize dg solver here, since it uses parameters now.
std::unique_ptr dg_solver;
if (use_dg) {
dg_solver.reset(new Opm::TofDiscGalReorder(grid, param));
} else {
use_multidim_upwind = param.getDefault("use_multidim_upwind", false);
}
// Write parameters used for later reference.
bool output = param.getDefault("output", true);
std::ofstream epoch_os;
std::string output_dir;
if (output) {
output_dir =
param.getDefault("output_dir", std::string("output"));
boost::filesystem::path fpath(output_dir);
try {
create_directories(fpath);
}
catch (...) {
OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath);
}
param.writeParam(output_dir + "/simulation.param");
}
// Issue a warning if any parameters were unused.
warnIfUnusedParams(param);
// Solve time-of-flight.
Opm::time::StopWatch transport_timer;
transport_timer.start();
std::vector tof;
std::vector tracer;
if (use_dg) {
if (compute_tracer) {
dg_solver->solveTofTracer(&flux[0], &porevol[0], &src[0], tracerheads, tof, tracer);
} else {
dg_solver->solveTof(&flux[0], &porevol[0], &src[0], tof);
}
} else {
Opm::TofReorder tofsolver(grid, use_multidim_upwind);
if (compute_tracer) {
tofsolver.solveTofTracer(&flux[0], &porevol[0], &src[0], tracerheads, tof, tracer);
} else {
tofsolver.solveTof(&flux[0], &porevol[0], &src[0], tof);
}
}
transport_timer.stop();
double tt = transport_timer.secsSinceStart();
std::cout << "Transport solver took: " << tt << " seconds." << std::endl;
// Output.
if (output) {
std::string tof_filename = output_dir + "/tof.txt";
std::ofstream tof_stream(tof_filename.c_str());
tof_stream.precision(16);
std::copy(tof.begin(), tof.end(), std::ostream_iterator(tof_stream, "\n"));
if (compute_tracer) {
std::string tracer_filename = output_dir + "/tracer.txt";
std::ofstream tracer_stream(tracer_filename.c_str());
tracer_stream.precision(16);
const int nt = tracer.size()/grid.number_of_cells;
for (int i = 0; i < nt*grid.number_of_cells; ++i) {
tracer_stream << tracer[i] << (((i + 1) % nt == 0) ? '\n' : ' ');
}
}
}
}