/* Copyright 2012 SINTEF ICT, Applied Mathematics. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #if HAVE_CONFIG_H #include "config.h" #endif // HAVE_CONFIG_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace { void warnIfUnusedParams(const Opm::parameter::ParameterGroup& param) { if (param.anyUnused()) { std::cout << "-------------------- Warning: unused parameters: --------------------\n"; param.displayUsage(); std::cout << "-------------------------------------------------------------------------" << std::endl; } } } // anon namespace // ----------------- Main program ----------------- int main(int argc, char** argv) { using namespace Opm; parameter::ParameterGroup param(argc, argv, false); // Read grid. GridManager grid_manager(param.get("grid_filename")); const UnstructuredGrid& grid = *grid_manager.c_grid(); // Read porosity, compute pore volume. std::vector porevol; { std::ifstream poro_stream(param.get("poro_filename").c_str()); std::istream_iterator beg(poro_stream); std::istream_iterator end; porevol.assign(beg, end); // Now contains poro. if (int(porevol.size()) != grid.number_of_cells) { OPM_THROW(std::runtime_error, "Size of porosity field differs from number of cells."); } for (int i = 0; i < grid.number_of_cells; ++i) { porevol[i] *= grid.cell_volumes[i]; } } // Read flux. std::vector flux; { std::ifstream flux_stream(param.get("flux_filename").c_str()); std::istream_iterator beg(flux_stream); std::istream_iterator end; flux.assign(beg, end); if (int(flux.size()) != grid.number_of_faces) { OPM_THROW(std::runtime_error, "Size of flux field differs from number of faces."); } } // Read source terms. std::vector src; { std::ifstream src_stream(param.get("src_filename").c_str()); std::istream_iterator beg(src_stream); std::istream_iterator end; src.assign(beg, end); if (int(src.size()) != grid.number_of_cells) { OPM_THROW(std::runtime_error, "Size of source term field differs from number of cells."); } } const bool compute_tracer = param.getDefault("compute_tracer", false); Opm::SparseTable tracerheads; if (compute_tracer) { std::ifstream tr_stream(param.get("tracerheads_filename").c_str()); int num_rows; tr_stream >> num_rows; for (int row = 0; row < num_rows; ++row) { int row_size; tr_stream >> row_size; std::vector rowdata(row_size); for (int elem = 0; elem < row_size; ++elem) { tr_stream >> rowdata[elem]; } tracerheads.appendRow(rowdata.begin(), rowdata.end()); } } // Choice of tof solver. bool use_dg = param.getDefault("use_dg", false); bool use_multidim_upwind = false; // Need to initialize dg solver here, since it uses parameters now. std::unique_ptr dg_solver; if (use_dg) { dg_solver.reset(new Opm::TofDiscGalReorder(grid, param)); } else { use_multidim_upwind = param.getDefault("use_multidim_upwind", false); } // Write parameters used for later reference. bool output = param.getDefault("output", true); std::ofstream epoch_os; std::string output_dir; if (output) { output_dir = param.getDefault("output_dir", std::string("output")); boost::filesystem::path fpath(output_dir); try { create_directories(fpath); } catch (...) { OPM_THROW(std::runtime_error, "Creating directories failed: " << fpath); } param.writeParam(output_dir + "/simulation.param"); } // Issue a warning if any parameters were unused. warnIfUnusedParams(param); // Solve time-of-flight. Opm::time::StopWatch transport_timer; transport_timer.start(); std::vector tof; std::vector tracer; if (use_dg) { if (compute_tracer) { dg_solver->solveTofTracer(&flux[0], &porevol[0], &src[0], tracerheads, tof, tracer); } else { dg_solver->solveTof(&flux[0], &porevol[0], &src[0], tof); } } else { Opm::TofReorder tofsolver(grid, use_multidim_upwind); if (compute_tracer) { tofsolver.solveTofTracer(&flux[0], &porevol[0], &src[0], tracerheads, tof, tracer); } else { tofsolver.solveTof(&flux[0], &porevol[0], &src[0], tof); } } transport_timer.stop(); double tt = transport_timer.secsSinceStart(); std::cout << "Transport solver took: " << tt << " seconds." << std::endl; // Output. if (output) { std::string tof_filename = output_dir + "/tof.txt"; std::ofstream tof_stream(tof_filename.c_str()); tof_stream.precision(16); std::copy(tof.begin(), tof.end(), std::ostream_iterator(tof_stream, "\n")); if (compute_tracer) { std::string tracer_filename = output_dir + "/tracer.txt"; std::ofstream tracer_stream(tracer_filename.c_str()); tracer_stream.precision(16); const int nt = tracer.size()/grid.number_of_cells; for (int i = 0; i < nt*grid.number_of_cells; ++i) { tracer_stream << tracer[i] << (((i + 1) % nt == 0) ? '\n' : ' '); } } } }