/* Copyright 2022-2023 SINTEF AS This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #define BOOST_TEST_MODULE TestCuVector #include #include #include #include #include #include BOOST_AUTO_TEST_CASE(TestDocumentedUsage) { auto someDataOnCPU = std::vector({1.0, 2.0, 42.0, 59.9451743, 10.7132692}); auto dataOnGPU = ::Opm::cuistl::CuVector(someDataOnCPU); // Multiply by 4.0: dataOnGPU *= 4.0; // Get data back on CPU in another vector: auto stdVectorOnCPU = dataOnGPU.asStdVector(); std::vector correctVector(someDataOnCPU.size()); std::transform(someDataOnCPU.begin(), someDataOnCPU.end(), correctVector.begin(), [](double x) { return 4 * x; }); BOOST_CHECK_EQUAL_COLLECTIONS( stdVectorOnCPU.begin(), stdVectorOnCPU.end(), correctVector.begin(), correctVector.end()); } BOOST_AUTO_TEST_CASE(TestConstructionSize) { const int numberOfElements = 1234; auto vectorOnGPU = Opm::cuistl::CuVector(numberOfElements); BOOST_CHECK_EQUAL(numberOfElements, vectorOnGPU.dim()); } BOOST_AUTO_TEST_CASE(TestCopyFromHostConstructor) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim()); std::vector buffer(data.size(), 0.0); vectorOnGPU.copyToHost(buffer.data(), buffer.size()); BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end()); } BOOST_AUTO_TEST_CASE(TestCopyFromHostFunction) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.size()); BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim()); vectorOnGPU.copyFromHost(data.data(), data.size()); std::vector buffer(data.size(), 0.0); vectorOnGPU.copyToHost(buffer.data(), buffer.size()); BOOST_CHECK_EQUAL_COLLECTIONS(buffer.begin(), buffer.end(), data.begin(), data.end()); } BOOST_AUTO_TEST_CASE(TestCopyFromBvector) { auto blockVector = Dune::BlockVector> {{{42, 43}, {44, 45}, {46, 47}}}; auto vectorOnGPU = Opm::cuistl::CuVector(blockVector.dim()); vectorOnGPU.copyFromHost(blockVector); std::vector buffer(vectorOnGPU.dim()); vectorOnGPU.copyToHost(buffer.data(), buffer.size()); BOOST_CHECK_EQUAL_COLLECTIONS( buffer.begin(), buffer.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim()); } BOOST_AUTO_TEST_CASE(TestCopyToBvector) { std::vector data {{1, 2, 3, 4, 5, 6, 7, 8, 9}}; auto blockVector = Dune::BlockVector>(3); auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); vectorOnGPU.copyToHost(blockVector); BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), &blockVector[0][0], &blockVector[0][0] + blockVector.dim()); } BOOST_AUTO_TEST_CASE(TestDataPointer) { std::vector data {{1, 2, 3, 4, 5, 6, 7, 8, 9}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); std::vector buffer(data.size(), 0.0); cudaMemcpy(buffer.data(), vectorOnGPU.data(), sizeof(double) * data.size(), cudaMemcpyDeviceToHost); BOOST_CHECK_EQUAL_COLLECTIONS(data.begin(), data.end(), buffer.begin(), buffer.end()); } BOOST_AUTO_TEST_CASE(TestCopyScalarMultiply) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); BOOST_CHECK_EQUAL(data.size(), vectorOnGPU.dim()); const double scalar = 42.25; vectorOnGPU *= scalar; std::vector buffer(data.size(), 0.0); vectorOnGPU.copyToHost(buffer.data(), buffer.size()); for (size_t i = 0; i < buffer.size(); ++i) { BOOST_CHECK_EQUAL(buffer[i], scalar * data[i]); } } BOOST_AUTO_TEST_CASE(TestTwoNorm) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); auto twoNorm = vectorOnGPU.two_norm(); double correctAnswer = 0.0; for (double d : data) { correctAnswer += d * d; } correctAnswer = std::sqrt(correctAnswer); BOOST_CHECK_EQUAL(correctAnswer, twoNorm); } BOOST_AUTO_TEST_CASE(TestDot) { std::vector dataA {{1, 2, 3, 4, 5, 6, 7}}; std::vector dataB {{8, 9, 10, 11, 12, 13, 14}}; auto vectorOnGPUA = Opm::cuistl::CuVector(dataA.data(), dataA.size()); auto vectorOnGPUB = Opm::cuistl::CuVector(dataB.data(), dataB.size()); auto dot = vectorOnGPUA.dot(vectorOnGPUB); double correctAnswer = 0.0; for (size_t i = 0; i < dataA.size(); ++i) { correctAnswer += dataA[i] * dataB[i]; } correctAnswer = correctAnswer; BOOST_CHECK_EQUAL(correctAnswer, dot); } BOOST_AUTO_TEST_CASE(Assigment) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); vectorOnGPU = 10.0; vectorOnGPU.copyToHost(data.data(), data.size()); for (double x : data) { BOOST_CHECK_EQUAL(10.0, x); } } BOOST_AUTO_TEST_CASE(CopyAssignment) { std::vector data {{1, 2, 3, 4, 5, 6, 7}}; auto vectorOnGPU = Opm::cuistl::CuVector(data.data(), data.size()); vectorOnGPU.copyToHost(data.data(), data.size()); auto vectorOnGPUB = Opm::cuistl::CuVector(data.size()); vectorOnGPUB = 4.0; vectorOnGPUB = vectorOnGPU; std::vector output(data.size()); vectorOnGPUB.copyToHost(output.data(), output.size()); BOOST_CHECK_EQUAL_COLLECTIONS(output.begin(), output.end(), data.begin(), data.end()); } BOOST_AUTO_TEST_CASE(RandomVectors) { using GVector = Opm::cuistl::CuVector; std::srand(0); std::mt19937 generator; std::uniform_real_distribution distribution(-100.0, 100.0); std::uniform_real_distribution distribution01(.0, 1.0); const size_t N = 1000; const size_t retries = 100; for (size_t retry = 0; retry < retries; ++retry) { std::vector a(N); std::vector b(N); for (size_t i = 0; i < N; ++i) { a[i] = distribution(generator); b[i] = distribution(generator); } auto aGPU = GVector(a); auto bGPU = GVector(b); aGPU += bGPU; auto aOutputPlus = aGPU.asStdVector(); for (size_t i = 0; i < N; ++i) { BOOST_CHECK_EQUAL(aOutputPlus[i], a[i] + b[i]); } aGPU = GVector(a); aGPU -= bGPU; auto aOutputMinus = aGPU.asStdVector(); for (size_t i = 0; i < N; ++i) { BOOST_CHECK_EQUAL(aOutputMinus[i], a[i] - b[i]); } aGPU = GVector(a); auto scalar = distribution(generator); aGPU *= scalar; auto aOutputScalar = aGPU.asStdVector(); for (size_t i = 0; i < N; ++i) { BOOST_CHECK_EQUAL(aOutputScalar[i], scalar * a[i]); } aGPU = GVector(a); aGPU.axpy(scalar, bGPU); auto aOutputSaxypy = aGPU.asStdVector(); for (size_t i = 0; i < N; ++i) { BOOST_CHECK_CLOSE(aOutputSaxypy[i], a[i] + scalar * b[i], 1e-10); } aGPU = GVector(a); auto dotted = aGPU.dot(bGPU); double correct = 0.0; for (size_t i = 0; i < N; ++i) { correct += a[i] * b[i]; } BOOST_CHECK_CLOSE(dotted, correct, 1e-10); aGPU = GVector(a); auto twoNorm = aGPU.two_norm(); double correctTwoNorm = 0.0; for (size_t i = 0; i < N; ++i) { correctTwoNorm += a[i] * a[i]; } correctTwoNorm = std::sqrt(correctTwoNorm); BOOST_CHECK_CLOSE(twoNorm, correctTwoNorm, 1e-12); aGPU = GVector(a); std::vector indexSet; const double rejectCriteria = 0.2; for (size_t i = 0; i < N; ++i) { const auto reject = distribution01(generator); if (reject < rejectCriteria) { indexSet.push_back(i); } } auto indexSetGPU = Opm::cuistl::CuVector(indexSet); aGPU.setZeroAtIndexSet(indexSetGPU); auto projectedA = aGPU.asStdVector(); for (size_t i = 0; i < N; ++i) { // Yeah, O(N^2) so sue me bool found = std::find(indexSet.begin(), indexSet.end(), i) != indexSet.end(); if (found) { BOOST_CHECK_EQUAL(projectedA[i], 0); } else { BOOST_CHECK_EQUAL(projectedA[i], a[i]); } } aGPU = GVector(a); auto twoNormAtIndices = aGPU.two_norm(indexSetGPU); double correctTwoNormAtIndices = 0.0; for (size_t i = 0; i < indexSet.size(); ++i) { correctTwoNormAtIndices += a[indexSet[i]] * a[indexSet[i]]; } correctTwoNormAtIndices = std::sqrt(correctTwoNormAtIndices); BOOST_CHECK_CLOSE(correctTwoNormAtIndices, twoNormAtIndices, 1e-13); } }