/* Copyright 2017 SINTEF Digital, Mathematics and Cybernetics. Copyright 2017 Statoil ASA. Copyright 2016 - 2017 IRIS AS. This file is part of the Open Porous Media project (OPM). OPM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OPM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OPM. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Opm { template StandardWellGeneric:: StandardWellGeneric(int Bhp, const WellInterfaceGeneric& baseif) : baseif_(baseif) , perf_densities_(baseif_.numPerfs()) , perf_pressure_diffs_(baseif_.numPerfs()) , parallelB_(duneB_, baseif_.parallelWellInfo()) , Bhp_(Bhp) { duneB_.setBuildMode(OffDiagMatWell::row_wise); duneC_.setBuildMode(OffDiagMatWell::row_wise); invDuneD_.setBuildMode(DiagMatWell::row_wise); } template double StandardWellGeneric:: relaxationFactorRate(const std::vector& primary_variables, const BVectorWell& dwells) { double relaxation_factor = 1.0; static constexpr int WQTotal = 0; // For injector, we only check the total rates to avoid sign change of rates const double original_total_rate = primary_variables[WQTotal]; const double newton_update = dwells[0][WQTotal]; const double possible_update_total_rate = primary_variables[WQTotal] - newton_update; // 0.8 here is a experimental value, which remains to be optimized // if the original rate is zero or possible_update_total_rate is zero, relaxation_factor will // always be 1.0, more thoughts might be needed. if (original_total_rate * possible_update_total_rate < 0.) { // sign changed relaxation_factor = std::abs(original_total_rate / newton_update) * 0.8; } assert(relaxation_factor >= 0.0 && relaxation_factor <= 1.0); return relaxation_factor; } template double StandardWellGeneric:: relaxationFactorFraction(const double old_value, const double dx) { assert(old_value >= 0. && old_value <= 1.0); double relaxation_factor = 1.; // updated values without relaxation factor const double possible_updated_value = old_value - dx; // 0.95 is an experimental value remains to be optimized if (possible_updated_value < 0.0) { relaxation_factor = std::abs(old_value / dx) * 0.95; } else if (possible_updated_value > 1.0) { relaxation_factor = std::abs((1. - old_value) / dx) * 0.95; } // if possible_updated_value is between 0. and 1.0, then relaxation_factor // remains to be one assert(relaxation_factor >= 0. && relaxation_factor <= 1.); return relaxation_factor; } template double StandardWellGeneric:: calculateThpFromBhp(const WellState &well_state, const std::vector& rates, const double bhp, DeferredLogger& deferred_logger) const { assert(int(rates.size()) == 3); // the vfp related only supports three phases now. static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; const double aqua = rates[Water]; const double liquid = rates[Oil]; const double vapour = rates[Gas]; // pick the density in the top layer double thp = 0.0; if (baseif_.isInjector()) { const int table_id = baseif_.wellEcl().vfp_table_number(); const double vfp_ref_depth = baseif_.vfpProperties()->getInj()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity()); thp = baseif_.vfpProperties()->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp); } else if (baseif_.isProducer()) { const int table_id = baseif_.wellEcl().vfp_table_number(); const double alq = baseif_.getALQ(well_state); const double vfp_ref_depth = baseif_.vfpProperties()->getProd()->getTable(table_id).getDatumDepth(); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity()); thp = baseif_.vfpProperties()->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq); } else { OPM_DEFLOG_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well", deferred_logger); } return thp; } template void StandardWellGeneric:: computeConnectionPressureDelta() { // Algorithm: // We'll assume the perforations are given in order from top to // bottom for each well. By top and bottom we do not necessarily // mean in a geometric sense (depth), but in a topological sense: // the 'top' perforation is nearest to the surface topologically. // Our goal is to compute a pressure delta for each perforation. // 1. Compute pressure differences between perforations. // dp_perf will contain the pressure difference between a // perforation and the one above it, except for the first // perforation for each well, for which it will be the // difference to the reference (bhp) depth. const int nperf = baseif_.numPerfs(); perf_pressure_diffs_.resize(nperf, 0.0); auto z_above = baseif_.parallelWellInfo().communicateAboveValues(baseif_.refDepth(), baseif_.perfDepth()); for (int perf = 0; perf < nperf; ++perf) { const double dz = baseif_.perfDepth()[perf] - z_above[perf]; perf_pressure_diffs_[perf] = dz * perf_densities_[perf] * baseif_.gravity(); } // 2. Compute pressure differences to the reference point (bhp) by // accumulating the already computed adjacent pressure // differences, storing the result in dp_perf. // This accumulation must be done per well. const auto beg = perf_pressure_diffs_.begin(); const auto end = perf_pressure_diffs_.end(); baseif_.parallelWellInfo().partialSumPerfValues(beg, end); } template std::optional StandardWellGeneric:: computeBhpAtThpLimitProdWithAlq(const std::function(const double)>& frates, const SummaryState& summary_state, DeferredLogger& deferred_logger, double maxPerfPress, double alq_value) const { return baseif_.computeBhpAtThpLimitProdCommon(frates, summary_state, maxPerfPress, getRho(), alq_value, deferred_logger); } template std::optional StandardWellGeneric:: computeBhpAtThpLimitInj(const std::function(const double)>& frates, const SummaryState& summary_state, DeferredLogger& deferred_logger) const { // Given a VFP function returning bhp as a function of phase // rates and thp: // fbhp(rates, thp), // a function extracting the particular flow rate used for VFP // lookups: // flo(rates) // and the inflow function (assuming the reservoir is fixed): // frates(bhp) // we want to solve the equation: // fbhp(frates(bhp, thplimit)) - bhp = 0 // for bhp. // // This may result in 0, 1 or 2 solutions. If two solutions, // the one corresponding to the lowest bhp (and therefore // highest rate) is returned. // // In order to detect these situations, we will find piecewise // linear approximations both to the inverse of the frates // function and to the fbhp function. // // We first take the FLO sample points of the VFP curve, and // find the corresponding bhp values by solving the equation: // flo(frates(bhp)) - flo_sample = 0 // for bhp, for each flo_sample. The resulting (flo_sample, // bhp_sample) values give a piecewise linear approximation to // the true inverse inflow function, at the same flo values as // the VFP data. // // Then we extract a piecewise linear approximation from the // multilinear fbhp() by evaluating it at the flo_sample // points, with fractions given by the frates(bhp_sample) // values. // // When we have both piecewise linear curves defined on the // same flo_sample points, it is easy to distinguish between // the 0, 1 or 2 solution cases, and obtain the right interval // in which to solve for the solution we want (with highest // flow in case of 2 solutions). static constexpr int Water = BlackoilPhases::Aqua; static constexpr int Oil = BlackoilPhases::Liquid; static constexpr int Gas = BlackoilPhases::Vapour; // Make the fbhp() function. const auto& controls = baseif_.wellEcl().injectionControls(summary_state); const auto& table = baseif_.vfpProperties()->getInj()->getTable(controls.vfp_table_number); const double vfp_ref_depth = table.getDatumDepth(); const double thp_limit = baseif_.getTHPConstraint(summary_state); const double dp = wellhelpers::computeHydrostaticCorrection(baseif_.refDepth(), vfp_ref_depth, getRho(), baseif_.gravity()); auto fbhp = [this, &controls, thp_limit, dp](const std::vector& rates) { assert(rates.size() == 3); return baseif_.vfpProperties()->getInj() ->bhp(controls.vfp_table_number, rates[Water], rates[Oil], rates[Gas], thp_limit) - dp; }; // Make the flo() function. auto flo = [&table](const std::vector& rates) { return detail::getFlo(table, rates[Water], rates[Oil], rates[Gas]); }; // Get the flo samples, add extra samples at low rates and bhp // limit point if necessary. std::vector flo_samples = table.getFloAxis(); if (flo_samples[0] > 0.0) { const double f0 = flo_samples[0]; flo_samples.insert(flo_samples.begin(), { f0/20.0, f0/10.0, f0/5.0, f0/2.0 }); } const double flo_bhp_limit = flo(frates(controls.bhp_limit)); if (flo_samples.back() < flo_bhp_limit) { flo_samples.push_back(flo_bhp_limit); } // Find bhp values for inflow relation corresponding to flo samples. std::vector bhp_samples; for (double flo_sample : flo_samples) { if (flo_sample > flo_bhp_limit) { // We would have to go over the bhp limit to obtain a // flow of this magnitude. We associate all such flows // with simply the bhp limit. The first one // encountered is considered valid, the rest not. They // are therefore skipped. bhp_samples.push_back(controls.bhp_limit); break; } auto eq = [&flo, &frates, flo_sample](double bhp) { return flo(frates(bhp)) - flo_sample; }; // TODO: replace hardcoded low/high limits. const double low = 10.0 * unit::barsa; const double high = 800.0 * unit::barsa; const int max_iteration = 50; const double flo_tolerance = 1e-6 * std::fabs(flo_samples.back()); int iteration = 0; try { const double solved_bhp = RegulaFalsiBisection<>:: solve(eq, low, high, max_iteration, flo_tolerance, iteration); bhp_samples.push_back(solved_bhp); } catch (...) { // Use previous value (or max value if at start) if we failed. bhp_samples.push_back(bhp_samples.empty() ? low : bhp_samples.back()); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE_EXTRACT_SAMPLES", "Robust bhp(thp) solve failed extracting bhp values at flo samples for well " + baseif_.name()); } } // Find bhp values for VFP relation corresponding to flo samples. const int num_samples = bhp_samples.size(); // Note that this can be smaller than flo_samples.size() std::vector fbhp_samples(num_samples); for (int ii = 0; ii < num_samples; ++ii) { fbhp_samples[ii] = fbhp(frates(bhp_samples[ii])); } // #define EXTRA_THP_DEBUGGING #ifdef EXTRA_THP_DEBUGGING std::string dbgmsg; dbgmsg += "flo: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(flo_samples[ii]); } dbgmsg += "\nbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(bhp_samples[ii]); } dbgmsg += "\nfbhp: "; for (int ii = 0; ii < num_samples; ++ii) { dbgmsg += " " + std::to_string(fbhp_samples[ii]); } OpmLog::debug(dbgmsg); #endif // EXTRA_THP_DEBUGGING // Look for sign changes for the (fbhp_samples - bhp_samples) piecewise linear curve. // We only look at the valid int sign_change_index = -1; for (int ii = 0; ii < num_samples - 1; ++ii) { const double curr = fbhp_samples[ii] - bhp_samples[ii]; const double next = fbhp_samples[ii + 1] - bhp_samples[ii + 1]; if (curr * next < 0.0) { // Sign change in the [ii, ii + 1] interval. sign_change_index = ii; // May overwrite, thereby choosing the highest-flo solution. } } // Handle the no solution case. if (sign_change_index == -1) { return std::nullopt; } // Solve for the proper solution in the given interval. auto eq = [&fbhp, &frates](double bhp) { return fbhp(frates(bhp)) - bhp; }; // TODO: replace hardcoded low/high limits. const double low = bhp_samples[sign_change_index + 1]; const double high = bhp_samples[sign_change_index]; const int max_iteration = 50; const double bhp_tolerance = 0.01 * unit::barsa; int iteration = 0; if (low == high) { // We are in the high flow regime where the bhp_samples // are all equal to the bhp_limit. assert(low == controls.bhp_limit); deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + baseif_.name()); return std::nullopt; } try { const double solved_bhp = RegulaFalsiBisection<>:: solve(eq, low, high, max_iteration, bhp_tolerance, iteration); #ifdef EXTRA_THP_DEBUGGING OpmLog::debug("***** " + name() + " solved_bhp = " + std::to_string(solved_bhp) + " flo_bhp_limit = " + std::to_string(flo_bhp_limit)); #endif // EXTRA_THP_DEBUGGING return solved_bhp; } catch (...) { deferred_logger.warning("FAILED_ROBUST_BHP_THP_SOLVE", "Robust bhp(thp) solve failed for well " + baseif_.name()); return std::nullopt; } } template void StandardWellGeneric:: checkConvergenceControlEq(const WellState& well_state, ConvergenceReport& report, DeferredLogger& deferred_logger, const double max_residual_allowed) const { double control_tolerance = 0.; using CR = ConvergenceReport; CR::WellFailure::Type ctrltype = CR::WellFailure::Type::Invalid; const int well_index = baseif_.indexOfWell(); const auto& ws = well_state.well(well_index); if (baseif_.wellIsStopped()) { ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-6; // use smaller tolerance for zero control? } else if (baseif_.isInjector() ) { auto current = ws.injection_cmode; switch(current) { case Well::InjectorCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = 1.e4; // 0.1 bar break; case Well::InjectorCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = 1.e3; // 0.01 bar break; case Well::InjectorCMode::RATE: case Well::InjectorCMode::RESV: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-4; // break; case Well::InjectorCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-6; // break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } else if (baseif_.isProducer() ) { auto current = ws.production_cmode; switch(current) { case Well::ProducerCMode::THP: ctrltype = CR::WellFailure::Type::ControlTHP; control_tolerance = 1.e4; // 0.1 bar break; case Well::ProducerCMode::BHP: ctrltype = CR::WellFailure::Type::ControlBHP; control_tolerance = 1.e3; // 0.01 bar break; case Well::ProducerCMode::ORAT: case Well::ProducerCMode::WRAT: case Well::ProducerCMode::GRAT: case Well::ProducerCMode::LRAT: case Well::ProducerCMode::RESV: case Well::ProducerCMode::CRAT: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-4; // smaller tolerance for rate control break; case Well::ProducerCMode::GRUP: ctrltype = CR::WellFailure::Type::ControlRate; control_tolerance = 1.e-6; // smaller tolerance for rate control break; default: OPM_DEFLOG_THROW(std::runtime_error, "Unknown well control control types for well " << baseif_.name(), deferred_logger); } } const double well_control_residual = std::abs(this->resWell_[0][Bhp_]); const int dummy_component = -1; if (std::isnan(well_control_residual)) { report.setWellFailed({ctrltype, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (well_control_residual > max_residual_allowed * 10.) { report.setWellFailed({ctrltype, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if ( well_control_residual > control_tolerance) { report.setWellFailed({ctrltype, CR::Severity::Normal, dummy_component, baseif_.name()}); } } template void StandardWellGeneric:: checkConvergencePolyMW(const std::vector& res, ConvergenceReport& report, const double maxResidualAllowed) const { if (baseif_.isInjector()) { // checking the convergence of the perforation rates const double wat_vel_tol = 1.e-8; const int dummy_component = -1; using CR = ConvergenceReport; const auto wat_vel_failure_type = CR::WellFailure::Type::MassBalance; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { const double wat_vel_residual = res[Bhp_ + 1 + perf]; if (std::isnan(wat_vel_residual)) { report.setWellFailed({wat_vel_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (wat_vel_residual > maxResidualAllowed * 10.) { report.setWellFailed({wat_vel_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if (wat_vel_residual > wat_vel_tol) { report.setWellFailed({wat_vel_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()}); } } // checking the convergence of the skin pressure const double pskin_tol = 1000.; // 1000 pascal const auto pskin_failure_type = CR::WellFailure::Type::Pressure; for (int perf = 0; perf < baseif_.numPerfs(); ++perf) { const double pskin_residual = res[Bhp_ + 1 + perf + baseif_.numPerfs()]; if (std::isnan(pskin_residual)) { report.setWellFailed({pskin_failure_type, CR::Severity::NotANumber, dummy_component, baseif_.name()}); } else if (pskin_residual > maxResidualAllowed * 10.) { report.setWellFailed({pskin_failure_type, CR::Severity::TooLarge, dummy_component, baseif_.name()}); } else if (pskin_residual > pskin_tol) { report.setWellFailed({pskin_failure_type, CR::Severity::Normal, dummy_component, baseif_.name()}); } } } } #if HAVE_CUDA || HAVE_OPENCL template void StandardWellGeneric:: getNumBlocks(unsigned int& numBlocks) const { numBlocks = duneB_.nonzeroes(); } #endif template class StandardWellGeneric; }