// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see .
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::ObstacleProblem
*/
#ifndef EWOMS_OBSTACLE_PROBLEM_HH
#define EWOMS_OBSTACLE_PROBLEM_HH
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace Opm {
template
class ObstacleProblem;
}
namespace Opm::Properties {
namespace TTag {
struct ObstacleBaseProblem {};
}
// Set the grid type
template
struct Grid { using type = Dune::YaspGrid<2>; };
// Set the problem property
template
struct Problem { using type = Opm::ObstacleProblem; };
// Set fluid configuration
template
struct FluidSystem
{ using type = Opm::H2ON2FluidSystem>; };
// Set the material Law
template
struct MaterialLaw
{
private:
// define the material law
using Scalar = GetPropType;
using FluidSystem = GetPropType;
using MaterialTraits = Opm::TwoPhaseMaterialTraits;
using EffMaterialLaw = Opm::LinearMaterial;
public:
using type = Opm::EffToAbsLaw;
};
// Set the thermal conduction law
template
struct ThermalConductionLaw
{
private:
using Scalar = GetPropType;
using FluidSystem = GetPropType;
public:
// define the material law parameterized by absolute saturations
using type = Opm::SomertonThermalConductionLaw;
};
// set the energy storage law for the solid phase
template
struct SolidEnergyLaw
{ using type = Opm::ConstantSolidHeatCapLaw>; };
} // namespace Opm::Properties
namespace Opm::Parameters {
// Enable gravity
template
struct EnableGravity
{ static constexpr bool value = true; };
// The default for the end time of the simulation
template
struct EndTime
{
using type = GetPropType;
static constexpr type value = 1e4;
};
// The default DGF file to load
template
struct GridFile
{ static constexpr auto value = "./data/obstacle_24x16.dgf"; };
// The default for the initial time step size of the simulation
template
struct InitialTimeStepSize
{
using type = GetPropType;
static constexpr type value = 250;
};
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Problem where liquid water is first stopped by a
* low-permeability lens and then seeps though it.
*
* Liquid water is injected by using of a free-flow condition on the
* lower right of the domain. This water level then raises until
* hydrostatic pressure is reached. On the left of the domain, a
* rectangular obstacle with \f$10^3\f$ lower permeability than the
* rest of the domain first stops the for a while until it seeps
* through it.
*
* The domain is sized 60m times 40m and consists of two media, a
* moderately permeable soil (\f$ K_0=10e-12 m^2\f$) and an obstacle
* at \f$[10; 20]m \times [0; 35]m \f$ with a lower permeablility of
* \f$ K_1=K_0/1000\f$.
*
* Initially the whole domain is filled by nitrogen, the temperature
* is \f$20^\circ C\f$ for the whole domain. The gas pressure is
* initially 1 bar, at the inlet of the liquid water on the right side
* it is 2 bar.
*
* The boundary is no-flow except on the lower 10 meters of the left
* and the right boundary where a free flow condition is assumed.
*/
template
class ObstacleProblem : public GetPropType
{
using ParentType = GetPropType;
using GridView = GetPropType;
using Scalar = GetPropType;
using EqVector = GetPropType;
using RateVector = GetPropType;
using PrimaryVariables = GetPropType;
using BoundaryRateVector = GetPropType;
using FluidSystem = GetPropType;
using MaterialLaw = GetPropType;
using MaterialLawParams = GetPropType;
using ThermalConductionLawParams = GetPropType;
using SolidEnergyLawParams = GetPropType;
enum {
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
numPhases = getPropValue(),
gasPhaseIdx = FluidSystem::gasPhaseIdx,
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
H2OIdx = FluidSystem::H2OIdx,
N2Idx = FluidSystem::N2Idx
};
using GlobalPosition = Dune::FieldVector;
using PhaseVector = Dune::FieldVector;
using DimMatrix = Dune::FieldMatrix;
using Simulator = GetPropType;
using Model = GetPropType;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
ObstacleProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 1e-6;
temperature_ = 273.15 + 25; // -> 25°C
// initialize the tables of the fluid system
Scalar Tmin = temperature_ - 1.0;
Scalar Tmax = temperature_ + 1.0;
unsigned nT = 3;
Scalar pmin = 1.0e5 * 0.75;
Scalar pmax = 2.0e5 * 1.25;
unsigned np = 1000;
FluidSystem::init(Tmin, Tmax, nT, pmin, pmax, np);
// intrinsic permeabilities
coarseK_ = this->toDimMatrix_(1e-12);
fineK_ = this->toDimMatrix_(1e-15);
// the porosity
finePorosity_ = 0.3;
coarsePorosity_ = 0.3;
// residual saturations
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
// parameters for the linear law, i.e. minimum and maximum
// pressures
fineMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
fineMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
coarseMaterialParams_.setPcMinSat(liquidPhaseIdx, 0.0);
coarseMaterialParams_.setPcMaxSat(liquidPhaseIdx, 0.0);
/*
// entry pressures for Brooks-Corey
fineMaterialParams_.setEntryPressure(5e3);
coarseMaterialParams_.setEntryPressure(1e3);
// Brooks-Corey shape parameters
fineMaterialParams_.setLambda(2);
coarseMaterialParams_.setLambda(2);
*/
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// parameters for the somerton law of thermal conduction
computeThermalCondParams_(fineThermalCondParams_, finePorosity_);
computeThermalCondParams_(coarseThermalCondParams_, coarsePorosity_);
// assume constant volumetric heat capacity and granite
solidEnergyLawParams_.setSolidHeatCapacity(790.0 // specific heat capacity of granite [J / (kg K)]
* 2700.0); // density of granite [kg/m^3]
solidEnergyLawParams_.finalize();
initFluidStates_();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms of the individual phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
PrimaryVariables phaseStorage;
this->model().globalPhaseStorage(phaseStorage, phaseIdx);
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage in " << FluidSystem::phaseName(phaseIdx)
<< "Phase: [" << phaseStorage << "]"
<< "\n" << std::flush;
}
}
// Calculate total storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage total: [" << storage << "]"
<< "\n" << std::flush;
}
#endif // NDEBUG
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "obstacle"
<< "_" << Model::name();
return oss.str();
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* This problem simply assumes a constant temperature.
*/
template
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template
const DimMatrix&
intrinsicPermeability(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
if (isFineMaterial_(context.pos(spaceIdx, timeIdx)))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template
Scalar porosity(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template
const MaterialLawParams&
materialLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \brief Return the parameters for the energy storage law of the rock
*
* In this case, we assume the rock-matrix to be granite.
*/
template
const SolidEnergyLawParams&
solidEnergyLawParams(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return solidEnergyLawParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::thermalConductionParams
*/
template
const ThermalConductionLawParams &
thermalConductionParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineThermalCondParams_;
return coarseThermalCondParams_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onInlet_(pos))
values.setFreeFlow(context, spaceIdx, timeIdx, inletFluidState_);
else if (onOutlet_(pos))
values.setFreeFlow(context, spaceIdx, timeIdx, outletFluidState_);
else
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(outletFluidState_, matParams);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = 0.0; }
//! \}
private:
/*!
* \brief Returns whether a given global position is in the
* fine-permeability region or not.
*/
bool isFineMaterial_(const GlobalPosition& pos) const
{ return 10 <= pos[0] && pos[0] <= 20 && 0 <= pos[1] && pos[1] <= 35; }
bool onInlet_(const GlobalPosition& globalPos) const
{
Scalar x = globalPos[0];
Scalar y = globalPos[1];
return x >= 60 - eps_ && y <= 10;
}
bool onOutlet_(const GlobalPosition& globalPos) const
{
Scalar x = globalPos[0];
Scalar y = globalPos[1];
return x < eps_ && y <= 10;
}
void initFluidStates_()
{
initFluidState_(inletFluidState_, coarseMaterialParams_,
/*isInlet=*/true);
initFluidState_(outletFluidState_, coarseMaterialParams_,
/*isInlet=*/false);
}
template
void initFluidState_(FluidState& fs, const MaterialLawParams& matParams, bool isInlet)
{
unsigned refPhaseIdx;
unsigned otherPhaseIdx;
// set the fluid temperatures
fs.setTemperature(temperature_);
if (isInlet) {
// only liquid on inlet
refPhaseIdx = liquidPhaseIdx;
otherPhaseIdx = gasPhaseIdx;
// set liquid saturation
fs.setSaturation(liquidPhaseIdx, 1.0);
// set pressure of the liquid phase
fs.setPressure(liquidPhaseIdx, 2e5);
// set the liquid composition to pure water
fs.setMoleFraction(liquidPhaseIdx, N2Idx, 0.0);
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
}
else {
// elsewhere, only gas
refPhaseIdx = gasPhaseIdx;
otherPhaseIdx = liquidPhaseIdx;
// set gas saturation
fs.setSaturation(gasPhaseIdx, 1.0);
// set pressure of the gas phase
fs.setPressure(gasPhaseIdx, 1e5);
// set the gas composition to 99% nitrogen and 1% steam
fs.setMoleFraction(gasPhaseIdx, N2Idx, 0.99);
fs.setMoleFraction(gasPhaseIdx, H2OIdx, 0.01);
}
// set the other saturation
fs.setSaturation(otherPhaseIdx, 1.0 - fs.saturation(refPhaseIdx));
// calulate the capillary pressure
PhaseVector pC;
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(otherPhaseIdx, fs.pressure(refPhaseIdx)
+ (pC[otherPhaseIdx] - pC[refPhaseIdx]));
// make the fluid state consistent with local thermodynamic
// equilibrium
using ComputeFromReferencePhase = Opm::ComputeFromReferencePhase;
typename FluidSystem::template ParameterCache paramCache;
ComputeFromReferencePhase::solve(fs, paramCache, refPhaseIdx,
/*setViscosity=*/true,
/*setEnthalpy=*/false);
}
void computeThermalCondParams_(ThermalConductionLawParams& params, Scalar poro)
{
Scalar lambdaWater = 0.6;
Scalar lambdaGranite = 2.8;
Scalar lambdaWet = std::pow(lambdaGranite, (1 - poro))
* std::pow(lambdaWater, poro);
Scalar lambdaDry = std::pow(lambdaGranite, (1 - poro));
params.setFullySaturatedLambda(gasPhaseIdx, lambdaDry);
params.setFullySaturatedLambda(liquidPhaseIdx, lambdaWet);
params.setVacuumLambda(lambdaDry);
}
DimMatrix coarseK_;
DimMatrix fineK_;
Scalar coarsePorosity_;
Scalar finePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
ThermalConductionLawParams fineThermalCondParams_;
ThermalConductionLawParams coarseThermalCondParams_;
SolidEnergyLawParams solidEnergyLawParams_;
Opm::CompositionalFluidState inletFluidState_;
Opm::CompositionalFluidState outletFluidState_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif