opm-simulators/opm/simulators/aquifers/AquiferAnalytical.hpp
2024-07-01 12:06:47 +02:00

466 lines
16 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2017 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
#define OPM_AQUIFERANALYTICAL_HEADER_INCLUDED
#include <dune/grid/common/partitionset.hh>
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/EclipseState/Aquifer/Aquancon.hpp>
#include <opm/material/common/MathToolbox.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
#include <opm/models/blackoil/blackoilproperties.hh>
#include <opm/models/utils/basicproperties.hh>
#include <opm/output/data/Aquifer.hpp>
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <limits>
#include <numeric>
#include <optional>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferAnalytical : public AquiferInterface<TypeTag>
{
public:
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using BlackoilIndices = GetPropType<TypeTag, Properties::Indices>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
enum { enableTemperature = getPropValue<TypeTag, Properties::EnableTemperature>() };
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
enum { enableBrine = getPropValue<TypeTag, Properties::EnableBrine>() };
enum { enableVapwat = getPropValue<TypeTag, Properties::EnableVapwat>() };
enum { has_disgas_in_water = getPropValue<TypeTag, Properties::EnableDisgasInWater>() };
enum { enableSaltPrecipitation = getPropValue<TypeTag, Properties::EnableSaltPrecipitation>() };
static constexpr int numEq = BlackoilIndices::numEq;
using Eval = DenseAd::Evaluation<Scalar, /*size=*/numEq>;
using FluidState = BlackOilFluidState<Eval,
FluidSystem,
enableTemperature,
enableEnergy,
BlackoilIndices::gasEnabled,
enableVapwat,
enableBrine,
enableSaltPrecipitation,
has_disgas_in_water,
BlackoilIndices::numPhases>;
// Constructor
AquiferAnalytical(const int aqID,
const std::vector<Aquancon::AquancCell>& connections,
const Simulator& simulator)
: AquiferInterface<TypeTag>(aqID, simulator)
, connections_(connections)
{
this->initializeConnectionMappings();
}
// Destructor
virtual ~AquiferAnalytical()
{}
void computeFaceAreaFraction(const std::vector<Scalar>& total_face_area) override
{
assert (total_face_area.size() >= static_cast<typename std::vector<Scalar>::size_type>(this->aquiferID()));
const auto tfa = total_face_area[this->aquiferID() - 1];
const auto eps_sqrt = std::sqrt(std::numeric_limits<Scalar>::epsilon());
if (tfa < eps_sqrt) {
this->alphai_.assign(this->size(), Scalar{0});
}
else {
std::transform(this->faceArea_connected_.begin(),
this->faceArea_connected_.end(),
this->alphai_.begin(),
[tfa](const Scalar area)
{
return area / tfa;
});
}
this->area_fraction_ = this->totalFaceArea() / tfa;
}
Scalar totalFaceArea() const override
{
return this->total_face_area_;
}
void initFromRestart(const data::Aquifers& aquiferSoln) override
{
auto xaqPos = aquiferSoln.find(this->aquiferID());
if (xaqPos == aquiferSoln.end())
return;
this->assignRestartData(xaqPos->second);
this->W_flux_ = xaqPos->second.volume * this->area_fraction_;
this->pa0_ = xaqPos->second.initPressure;
this->solution_set_from_restart_ = true;
}
void initialSolutionApplied() override
{
initQuantities();
}
void beginTimeStep() override
{
ElementContext elemCtx(this->simulator_);
OPM_BEGIN_PARALLEL_TRY_CATCH();
for (const auto& elem : elements(this->simulator_.gridView())) {
elemCtx.updatePrimaryStencil(elem);
const int cellIdx = elemCtx.globalSpaceIndex(0, 0);
const int idx = cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updateIntensiveQuantities(0);
const auto& iq = elemCtx.intensiveQuantities(0, 0);
pressure_previous_[idx] = getValue(iq.fluidState().pressure(this->phaseIdx_()));
}
OPM_END_PARALLEL_TRY_CATCH("AquiferAnalytical::beginTimeStep() failed: ",
this->simulator_.vanguard().grid().comm());
}
void addToSource(RateVector& rates,
const unsigned cellIdx,
const unsigned timeIdx) override
{
const auto& model = this->simulator_.model();
const int idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
return;
const auto& intQuants = model.intensiveQuantities(cellIdx, timeIdx);
// This is the pressure at td + dt
this->updateCellPressure(this->pressure_current_, idx, intQuants);
this->calculateInflowRate(idx, this->simulator_);
rates[BlackoilIndices::conti0EqIdx + compIdx_()]
+= this->Qai_[idx] / model.dofTotalVolume(cellIdx);
if constexpr (enableEnergy) {
auto fs = intQuants.fluidState();
if (this->Ta0_.has_value() && this->Qai_[idx] > 0)
{
fs.setTemperature(this->Ta0_.value());
typedef typename std::decay<decltype(fs)>::type::Scalar FsScalar;
typename FluidSystem::template ParameterCache<FsScalar> paramCache;
const unsigned pvtRegionIdx = intQuants.pvtRegionIndex();
paramCache.setRegionIndex(pvtRegionIdx);
paramCache.setMaxOilSat(this->simulator_.problem().maxOilSaturation(cellIdx));
paramCache.updatePhase(fs, this->phaseIdx_());
const auto& h = FluidSystem::enthalpy(fs, paramCache, this->phaseIdx_());
fs.setEnthalpy(this->phaseIdx_(), h);
}
rates[BlackoilIndices::contiEnergyEqIdx]
+= this->Qai_[idx] *fs.enthalpy(this->phaseIdx_()) * FluidSystem::referenceDensity( this->phaseIdx_(), intQuants.pvtRegionIndex()) / model.dofTotalVolume(cellIdx);
}
}
std::size_t size() const
{
return this->connections_.size();
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(pressure_previous_);
serializer(pressure_current_);
serializer(Qai_);
serializer(rhow_);
serializer(W_flux_);
}
bool operator==(const AquiferAnalytical& rhs) const
{
return this->pressure_previous_ == rhs.pressure_previous_ &&
this->pressure_current_ == rhs.pressure_current_ &&
this->Qai_ == rhs.Qai_ &&
this->rhow_ == rhs.rhow_ &&
this->W_flux_ == rhs.W_flux_;
}
protected:
virtual void assignRestartData(const data::AquiferData& xaq) = 0;
virtual void calculateInflowRate(int idx, const Simulator& simulator) = 0;
virtual void calculateAquiferCondition() = 0;
virtual void calculateAquiferConstants() = 0;
virtual Scalar aquiferDepth() const = 0;
Scalar gravity_() const
{
return this->simulator_.problem().gravity()[2];
}
int compIdx_() const
{
if (this->co2store_or_h2store_())
return FluidSystem::oilCompIdx;
return FluidSystem::waterCompIdx;
}
void initQuantities()
{
// We reset the cumulative flux at the start of any simulation, so, W_flux = 0
if (! this->solution_set_from_restart_) {
W_flux_ = Scalar{0};
}
this->initializeConnectionDepths();
this->calculateAquiferCondition();
this->calculateAquiferConstants();
this->pressure_previous_.resize(this->size(), Scalar{0});
this->pressure_current_.resize(this->size(), Scalar{0});
this->Qai_.resize(this->size(), Scalar{0});
}
void updateCellPressure(std::vector<Eval>& pressure_water,
const int idx,
const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(this->phaseIdx_());
}
void updateCellPressure(std::vector<Scalar>& pressure_water,
const int idx,
const IntensiveQuantities& intQuants)
{
const auto& fs = intQuants.fluidState();
pressure_water.at(idx) = fs.pressure(this->phaseIdx_()).value();
}
void initializeConnectionMappings()
{
this->alphai_.resize(this->size(), 1.0);
this->faceArea_connected_.resize(this->size(), Scalar{0});
// total_face_area_ is the sum of the areas connected to an aquifer
this->total_face_area_ = Scalar{0};
this->cellToConnectionIdx_.resize(this->simulator_.gridView().size(/*codim=*/0), -1);
const auto& gridView = this->simulator_.vanguard().gridView();
for (std::size_t idx = 0; idx < this->size(); ++idx) {
const auto global_index = this->connections_[idx].global_index;
const int cell_index = this->simulator_.vanguard().compressedIndex(global_index);
if (cell_index < 0) {
continue;
}
auto elemIt = gridView.template begin</*codim=*/ 0>();
std::advance(elemIt, cell_index);
// The global_index is not part of this grid
if (elemIt->partitionType() != Dune::InteriorEntity) {
continue;
}
this->cellToConnectionIdx_[cell_index] = idx;
}
// Translate the C face tag into the enum used by opm-parser's TransMult class
FaceDir::DirEnum faceDirection;
// Get areas for all connections
const auto& elemMapper = this->simulator_.model().dofMapper();
for (const auto& elem : elements(gridView)) {
const unsigned cell_index = elemMapper.index(elem);
const int idx = this->cellToConnectionIdx_[cell_index];
// Only deal with connections given by the aquifer
if (idx < 0) {
continue;
}
for (const auto& intersection : intersections(gridView, elem)) {
// Only deal with grid boundaries
if (! intersection.boundary()) {
continue;
}
switch (intersection.indexInInside()) {
case 0:
faceDirection = FaceDir::XMinus;
break;
case 1:
faceDirection = FaceDir::XPlus;
break;
case 2:
faceDirection = FaceDir::YMinus;
break;
case 3:
faceDirection = FaceDir::YPlus;
break;
case 4:
faceDirection = FaceDir::ZMinus;
break;
case 5:
faceDirection = FaceDir::ZPlus;
break;
default:
OPM_THROW(std::logic_error,
"Internal error in initialization of aquifer.");
}
if (faceDirection == this->connections_[idx].face_dir) {
this->faceArea_connected_[idx] = this->connections_[idx].influx_coeff;
break;
}
}
this->total_face_area_ += this->faceArea_connected_.at(idx);
}
}
void initializeConnectionDepths()
{
this->cell_depth_.resize(this->size(), this->aquiferDepth());
const auto& gridView = this->simulator_.vanguard().gridView();
for (std::size_t idx = 0; idx < this->size(); ++idx) {
const int cell_index = this->simulator_.vanguard()
.compressedIndex(this->connections_[idx].global_index);
if (cell_index < 0) {
continue;
}
auto elemIt = gridView.template begin</*codim=*/ 0>();
std::advance(elemIt, cell_index);
// The global_index is not part of this grid
if (elemIt->partitionType() != Dune::InteriorEntity) {
continue;
}
this->cell_depth_.at(idx) = this->simulator_.vanguard().cellCenterDepth(cell_index);
}
}
// This function is for calculating the aquifer properties from equilibrium state with the reservoir
Scalar calculateReservoirEquilibrium()
{
// Since the global_indices are the reservoir index, we just need to extract the fluidstate at those indices
std::vector<Scalar> pw_aquifer;
Scalar water_pressure_reservoir;
ElementContext elemCtx(this->simulator_);
const auto& gridView = this->simulator_.gridView();
for (const auto& elem : elements(gridView)) {
elemCtx.updatePrimaryStencil(elem);
const auto cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto idx = this->cellToConnectionIdx_[cellIdx];
if (idx < 0)
continue;
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const auto& iq0 = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = iq0.fluidState();
water_pressure_reservoir = fs.pressure(this->phaseIdx_()).value();
const auto water_density = fs.density(this->phaseIdx_());
const auto gdz =
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
pw_aquifer.push_back(this->alphai_[idx] *
(water_pressure_reservoir - water_density.value()*gdz));
}
// We take the average of the calculated equilibrium pressures.
const auto& comm = this->simulator_.vanguard().grid().comm();
Scalar vals[2];
vals[0] = std::accumulate(this->alphai_.begin(), this->alphai_.end(), Scalar{0});
vals[1] = std::accumulate(pw_aquifer.begin(), pw_aquifer.end(), Scalar{0});
comm.sum(vals, 2);
return vals[1] / vals[0];
}
const std::vector<Aquancon::AquancCell> connections_;
// Grid variables
std::vector<Scalar> faceArea_connected_;
std::vector<int> cellToConnectionIdx_;
// Quantities at each grid id
std::vector<Scalar> cell_depth_;
std::vector<Scalar> pressure_previous_;
std::vector<Eval> pressure_current_;
std::vector<Eval> Qai_;
std::vector<Scalar> alphai_;
Scalar Tc_{}; // Time constant
Scalar pa0_{}; // initial aquifer pressure
std::optional<Scalar> Ta0_{}; // initial aquifer temperature
Scalar rhow_{};
Scalar total_face_area_{};
Scalar area_fraction_{Scalar{1}};
Eval W_flux_;
bool solution_set_from_restart_ {false};
bool has_active_connection_on_proc_{false};
};
} // namespace Opm
#endif