opm-simulators/opm/simulators/flow/LogOutputHelper.cpp
Tor Harald Sandve b42a8cbcc3 Add output of GMST/GMUS
Rename GMTR to GMMO as ending with TR are used for tracers
[FR]GMTR output maximum trapped CO2 in the gas phase
2024-05-13 11:24:08 +02:00

1004 lines
43 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/flow/LogOutputHelper.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/simulators/utils/PressureAverage.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <fmt/format.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <sstream>
#include <vector>
namespace {
template <typename IJKString>
void logUniqueFailedCells(const std::string& messageTag,
std::string_view prefix,
const std::size_t maxNumCellsFaillog,
const std::vector<int>& cells,
IJKString&& ijkString)
{
if (cells.empty()) {
return;
}
std::vector<int> sorted(cells);
std::sort(sorted.begin(), sorted.end());
auto u = std::unique(sorted.begin(), sorted.end());
const auto numFailed = static_cast<std::size_t>
(std::distance(sorted.begin(), u));
std::ostringstream errlog;
errlog << prefix << " failed for " << numFailed << " cell"
<< ((numFailed != std::size_t{1}) ? "s" : "")
<< " [" << ijkString(cells[0]);
const auto maxElems = std::min(maxNumCellsFaillog, numFailed);
for (auto i = 1 + 0*maxElems; i < maxElems; ++i) {
errlog << ", " << ijkString(cells[i]);
}
if (numFailed > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << ']';
Opm::OpmLog::warning(messageTag, errlog.str());
}
} // Namespace anonymous
namespace Opm {
template<class Scalar>
LogOutputHelper<Scalar>::LogOutputHelper(const EclipseState& eclState,
const Schedule& schedule,
const SummaryState& summaryState,
const std::string& moduleVersionName)
: eclState_(eclState)
, schedule_(schedule)
, summaryState_(summaryState)
, flowVersionName_(moduleVersionName)
{}
template<class Scalar>
void LogOutputHelper<Scalar>::
cumulative(const std::size_t reportStepNum) const
{
this->beginCumulativeReport_();
std::vector<Scalar> tmp_values(WellCumDataType::numWCValues, 0.0);
std::vector<std::string> tmp_names(WellCumDataType::numWCNames, "");
const auto& st = summaryState_;
for (const auto& gname : schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD") {
tmp_values[2] = st.get("FOPT", 0.0); // WellCumDataType::OilProd
tmp_values[3] = st.get("FWPT", 0.0); // WellCumDataType::WaterProd
tmp_values[4] = st.get("FGPT", 0.0); // WellCumDataType::GasProd
tmp_values[5] = st.get("FVPT", 0.0); // WellCumDataType::FluidResVolProd
tmp_values[6] = st.get("FOIT", 0.0); // WellCumDataType::OilInj
tmp_values[7] = st.get("FWIT", 0.0); // WellCumDataType::WaterInj
tmp_values[8] = st.get("FGIT", 0.0); // WellCumDataType::GasInj
tmp_values[9] = st.get("FVIT", 0.0); // WellCumDataType::FluidResVolInj
} else {
tmp_values[2] = get("GOPT"); // WellCumDataType::OilProd
tmp_values[3] = get("GWPT"); // WellCumDataType::WaterProd
tmp_values[4] = get("GGPT"); // WellCumDataType::GasProd
tmp_values[5] = get("GVPT"); // WellCumDataType::FluidResVolProd
tmp_values[6] = get("GOIT"); // WellCumDataType::OilInj
tmp_values[7] = get("GWIT"); // WellCumDataType::WaterInj
tmp_values[8] = get("GGIT"); // WellCumDataType::GasInj
tmp_values[9] = get("GVIT"); // WellCumDataType::FluidResVolInj
}
this->outputCumulativeReportRecord_(tmp_values, tmp_names);
}
for (const auto& wname : schedule_.wellNames(reportStepNum)) {
const auto& well = schedule_.getWell(wname, reportStepNum);
tmp_names[0] = wname; // WellCumDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
if (well.isInjector()) {
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = ::Opm::Well::InjectorCMode;
using WType = ::Opm::InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default: return "";
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default: return "";
}
};
tmp_names[1] = "INJ"; // WellCumDataType::WellType
const auto flowctl = fctl(ctlMode);
if (flowctl == "RATE") { // WellCumDataType::WellCTRL
const auto flowtype = ftype(injType);
if (flowtype == "Oil") {
tmp_names[2] = "ORAT";
} else if (flowtype == "Wat") {
tmp_names[2] = "WRAT";
} else if (flowtype == "Gas") {
tmp_names[2] = "GRAT";
}
} else {
tmp_names[2] = flowctl;
}
} else if (well.isProducer()) {
const auto& controls = well.productionControls(st);
using CMode = ::Opm::Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRAT";
case CMode::GRUP: return "GRUP";
default: return "none";
}
};
tmp_names[1] = "PROD"; // WellProdDataType::CTRLMode
tmp_names[2] = fctl(controls.cmode); // WellProdDataType::CTRLMode
}
tmp_values[0] = well.getHeadI() + 1; // WellCumDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; // WellCumDataType::wellLocationj
tmp_values[2] = get("WOPT"); // WellCumDataType::OilProd
tmp_values[3] = get("WWPT"); // WellCumDataType::WaterProd
tmp_values[4] = get("WGPT"); // WellCumDataType::GasProd
tmp_values[5] = get("WVPT"); // WellCumDataType::FluidResVolProd
tmp_values[6] = get("WOIT"); // WellCumDataType::OilInj
tmp_values[7] = get("WWIT"); // WellCumDataType::WaterInj
tmp_values[8] = get("WGIT"); // WellCumDataType::GasInj
tmp_values[9] = get("WVIT"); // WellCumDataType::FluidResVolInj
this->outputCumulativeReportRecord_(tmp_values, tmp_names);
}
this->endCumulativeReport_();
}
template<class Scalar>
void LogOutputHelper<Scalar>::
error(const std::vector<int>& failedCellsPbub,
const std::vector<int>& failedCellsPdew) const
{
auto ijkString = [this](const std::size_t globalIndex)
{
const auto ijk = this->eclState_.gridDims().getIJK(globalIndex);
return fmt::format("({},{},{})", ijk[0] + 1, ijk[1] + 1, ijk[2] + 1);
};
constexpr auto maxNumCellsFaillog = static_cast<std::size_t>(20);
logUniqueFailedCells("Bubble point numerical problem",
"Finding the bubble point pressure",
maxNumCellsFaillog,
failedCellsPbub,
ijkString);
logUniqueFailedCells("Dew point numerical problem",
"Finding the dew point pressure",
maxNumCellsFaillog,
failedCellsPdew,
ijkString);
}
template<class Scalar>
void LogOutputHelper<Scalar>::
fip(const Inplace& inplace,
const Inplace& initialInplace,
const std::string& name) const
{
auto iget = [&name](const Inplace& ip,
Inplace::Phase phase,
std::size_t idx)
{
if (name.empty()) {
return ip.get(phase);
}
return ip.get(name, phase, idx);
};
for (std::size_t reg = 1; reg <= (name.empty() ? 1 : inplace.max_region(name)); ++reg) {
std::unordered_map<Inplace::Phase, Scalar> initial_values;
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
initial_values[phase] = iget(initialInplace, phase, reg);
current_values[phase] = iget(inplace, phase, reg);
}
current_values[Inplace::Phase::DynamicPoreVolume] =
iget(inplace, Inplace::Phase::DynamicPoreVolume, reg);
this->fipUnitConvert_(initial_values);
this->fipUnitConvert_(current_values);
Scalar regHydroCarbonPoreVolumeAveragedPressure =
detail::pressureAverage(iget(inplace, Inplace::Phase::PressureHydroCarbonPV, reg),
iget(inplace, Inplace::Phase::HydroCarbonPV, reg),
iget(inplace, Inplace::Phase::PressurePV, reg),
iget(inplace, Inplace::Phase::DynamicPoreVolume, reg),
true);
this->pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
this->outputRegionFluidInPlace_(std::move(initial_values),
std::move(current_values),
regHydroCarbonPoreVolumeAveragedPressure,
name,
name.empty() ? 0 : reg);
}
}
template<class Scalar>
void LogOutputHelper<Scalar>::
fipResv(const Inplace& inplace, const std::string& name) const
{
{
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases())
current_values[phase] = inplace.get(phase);
Scalar field_dyn_pv = 0.0;
for (auto nreg = inplace.max_region(name), reg = 0*nreg + 1; reg <= nreg; ++reg)
field_dyn_pv = field_dyn_pv + inplace.get(name, Inplace::Phase::DynamicPoreVolume, reg);
current_values[Inplace::Phase::DynamicPoreVolume] = field_dyn_pv;
this->fipUnitConvert_(current_values);
this->outputResvFluidInPlace_(current_values, 0);
}
for (auto nreg = inplace.max_region(), reg = 0*nreg + 1; reg <= nreg; ++reg) {
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
if (reg <= inplace.max_region(name))
current_values[phase] = inplace.get(name, phase, reg);
else
current_values[phase] = 0.0;
}
if (reg <= inplace.max_region(name))
current_values[Inplace::Phase::DynamicPoreVolume] =
inplace.get(name, Inplace::Phase::DynamicPoreVolume, reg);
else
current_values[Inplace::Phase::DynamicPoreVolume] = 0.0;
this->fipUnitConvert_(current_values);
this->outputResvFluidInPlace_(current_values, reg);
}
std::ostringstream ss;
ss << " ===========================================================================================";
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
timeStamp(const std::string& lbl, double elapsed, int rstep, boost::posix_time::ptime currentDate) const
{
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y");
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "\n **************************************************************************\n"
<< " " << std::left << std::setw(9) << lbl << "AT" << std::right << std::setw(10)
<< (double)unit::convert::to(elapsed, unit::day) << " DAYS" << " *" << std::setw(30) << eclState_.getTitle() << " *\n"
<< " REPORT " << std::setw(4) << rstep << " " << currentDate
<< " * Flow version " << std::setw(11) << flowVersionName_ << " *\n"
<< " **************************************************************************\n";
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
injection(const std::size_t reportStepNum) const
{
this->beginInjectionReport_();
std::vector<Scalar> tmp_values(WellInjDataType::numWIValues, 0.0);
std::vector<std::string> tmp_names(WellInjDataType::numWINames, "");
const auto& st = summaryState_;
for (const auto& gname : schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD") {
tmp_values[2] = st.get("FOIR", 0.0); // WellInjDataType::OilRate
tmp_values[3] = st.get("FWIR", 0.0); // WellInjDataType::WaterRate
tmp_values[4] = st.get("FGIR", 0.0); // WellInjDataType::GasRate
tmp_values[5] = st.get("FVIR", 0.0); // WellInjDataType::FluidResVol
} else {
tmp_values[2] = get("GOIR"); // WellInjDataType::OilRate
tmp_values[3] = get("GWIR"); // WellInjDataType::WaterRate
tmp_values[4] = get("GGIR"); // WellInjDataType::GasRate
tmp_values[5] = get("GVIR"); // WellInjDataType::FluidResVol
}
this->outputInjectionReportRecord_(tmp_values, tmp_names);
}
for (const auto& wname : schedule_.wellNames(reportStepNum)) {
const auto& well = schedule_.getWell(wname, reportStepNum);
// Ignore Producer wells
if (well.isProducer()) {
continue;
}
tmp_names[0] = wname; // WellInjDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = Well::InjectorCMode;
using WType = InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default: return "";
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default: return "";
}
};
const auto flowtype = ftype(injType);
const auto flowctl = fctl(ctlMode);
if (flowtype == "Oil") { // WellInjDataType::CTRLModeOil
if (flowctl == "RATE") {
tmp_names[1] = "ORAT";
} else {
tmp_names[1] = flowctl;
}
}
else if (flowtype == "Wat") { // WellInjDataType::CTRLModeWat
if (flowctl == "RATE") {
tmp_names[3] = "WRAT";
} else {
tmp_names[2] = flowctl;
}
}
else if (flowtype == "Gas") // WellInjDataType::CTRLModeGas
{
if (flowctl == "RATE") {
tmp_names[3] = "GRAT";
} else {
tmp_names[3] = flowctl;
}
}
tmp_values[0] = well.getHeadI() + 1; // WellInjDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; // WellInjDataType::wellLocationj
tmp_values[2] = get("WOIR"); // WellInjDataType::OilRate
tmp_values[3] = get("WWIR"); // WellInjDataType::WaterRate
tmp_values[4] = get("WGIR"); // WellInjDataType::GasRate
tmp_values[5] = get("WVIR");// WellInjDataType::FluidResVol
tmp_values[6] = get("WBHP"); // WellInjDataType::BHP
tmp_values[7] = get("WTHP"); // WellInjDataType::THP
//tmp_values[8] = 0; // WellInjDataType::SteadyStateII
this->outputInjectionReportRecord_(tmp_values, tmp_names);
}
this->endInjectionReport_();
}
template<class Scalar>
void LogOutputHelper<Scalar>::
production(const std::size_t reportStepNum) const
{
this->beginProductionReport_();
std::vector<Scalar> tmp_values(WellProdDataType::numWPValues, 0.0);
std::vector<std::string> tmp_names(WellProdDataType::numWPNames, "");
const auto& st = summaryState_;
for (const auto& gname : schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD") {
tmp_values[2] = st.get("FOPR", 0.0); // WellProdDataType::OilRate
tmp_values[3] = st.get("FWPR", 0.0); // WellProdDataType::WaterRate
tmp_values[4] = st.get("FGPR", 0.0); // WellProdDataType::GasRate
tmp_values[5] = st.get("FVPR", 0.0); // WellProdDataType::FluidResVol
tmp_values[6] = st.get("FWCT", 0.0); // WellProdDataType::WaterCut
tmp_values[7] = st.get("FGOR", 0.0); // WellProdDataType::GasOilRatio
} else {
tmp_values[2] = get("GOPR"); // WellProdDataType::OilRate
tmp_values[3] = get("GWPR"); // WellProdDataType::WaterRate
tmp_values[4] = get("GGPR"); // WellProdDataType::GasRate
tmp_values[5] = get("GVPR"); // WellProdDataType::FluidResVol
tmp_values[6] = get("GWCT"); // WellProdDataType::WaterCut
tmp_values[7] = get("GGOR"); // WellProdDataType::GasOilRatio
}
tmp_values[8] = tmp_values[3] / tmp_values[4]; // WellProdDataType::WaterGasRatio
if (std::isnan(tmp_values[8])) {
tmp_values[8] = 0.0;
}
this->outputProductionReportRecord_(tmp_values, tmp_names);
}
for (const auto& wname : schedule_.wellNames(reportStepNum)) {
const auto& well = schedule_.getWell(wname, reportStepNum);
// Ignore injector wells
if (well.isInjector()) {
continue;
}
tmp_names[0] = wname; // WellProdDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.productionControls(st);
using CMode = Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRate";
case CMode::GRUP: return "GRUP";
default: return "none";
}
};
tmp_names[1] = fctl(controls.cmode); // WellProdDataType::CTRLMode
tmp_values[0] = well.getHeadI() + 1; // WellProdDataType::WellLocationi
tmp_values[1] = well.getHeadJ() + 1; // WellProdDataType::WellLocationj
tmp_values[2] = get("WOPR"); // WellProdDataType::OilRate
tmp_values[3] = get("WWPR"); // WellProdDataType::WaterRate
tmp_values[4] = get("WGPR"); // WellProdDataType::GasRate
tmp_values[5] = get("WVPR"); // WellProdDataType::FluidResVol
tmp_values[6] = get("WWCT"); // WellProdDataType::WaterCut
tmp_values[7] = get("WGOR"); // WellProdDataType::GasOilRatio
tmp_values[9] = get("WBHP"); // WellProdDataType::BHP
tmp_values[10] = get("WTHP"); // WellProdDataType::THP
//tmp_values[11] = 0; //WellProdDataType::SteadyStatePI //
tmp_values[8] = tmp_values[3] / tmp_values[4]; // WellProdDataType::WaterGasRatio
if (std::isnan(tmp_values[8])) {
tmp_values[8] = 0.0;
}
this->outputProductionReportRecord_(tmp_values, tmp_names);
}
this->endProductionReport_();
}
template <typename Scalar>
void LogOutputHelper<Scalar>::beginCumulativeReport_() const
{
const auto unitType = this->eclState_.getUnits().getType();
std::ostringstream ss;
ss << "\n=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n"
<< ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n"
<< ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n";
if (unitType == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n";
}
ss << "====================================================================================================================================";
OpmLog::note(ss.str());
}
template <typename Scalar>
void LogOutputHelper<Scalar>::endCumulativeReport_() const
{
const auto ss = std::string { ":--------:-----------:--------:----:-----------:-----------:-----------:-----------:-----------:-----------:-----------:-----------:" };
OpmLog::note(ss);
}
template<class Scalar>
void LogOutputHelper<Scalar>::
outputCumulativeReportRecord_(const std::vector<Scalar>& wellCum,
const std::vector<std::string>& wellCumNames) const
{
std::ostringstream ss;
ss << std::right << std::fixed << std::setprecision(0) << ':'
<< std::setw(8) << wellCumNames[WellCumDataType::WellName] << ':';
if (wellCum[WellCumDataType::WellLocationi] < 1) {
ss << std::setw(11) << "" << ':';
} else {
ss << std::setw( 5) << wellCum[WellCumDataType::WellLocationi] << ','
<< std::setw( 5) << wellCum[WellCumDataType::WellLocationj] << ':';
}
auto scaledValue = [&wellCum](const typename WellCumDataType::WCId quantity)
{
// Unit M*
return wellCum[quantity] / 1000.0;
};
auto scaledGasValue = [&wellCum](const typename WellCumDataType::WCId quantity)
{
// Unit MM*
return wellCum[quantity] / (1000.0 * 1000.0);
};
ss << std::setw( 8) << wellCumNames[WellCumDataType::WCId::WellType] << ':'
<< std::setw( 4) << wellCumNames[WellCumDataType::WCId::WellCTRL] << ':' << std::setprecision(1)
<< std::setw(11) << scaledValue(WellCumDataType::WCId::OilProd) << ':'
<< std::setw(11) << scaledValue(WellCumDataType::WCId::WaterProd) << ':'
<< std::setw(11) << scaledGasValue(WellCumDataType::WCId::GasProd) << ':'
<< std::setw(11) << scaledValue(WellCumDataType::WCId::FluidResVolProd) << ':'
<< std::setw(11) << scaledValue(WellCumDataType::WCId::OilInj) << ':'
<< std::setw(11) << scaledValue(WellCumDataType::WCId::WaterInj) << ':'
<< std::setw(11) << scaledGasValue(WellCumDataType::WCId::GasInj) << ':'
<< std::setw(11) << scaledValue(WellCumDataType::WCId::FluidResVolInj) << ':';
OpmLog::note(ss.str());
}
template <typename Scalar>
void LogOutputHelper<Scalar>::beginInjectionReport_() const
{
const auto unitType = this->eclState_.getUnits().getType();
std::ostringstream ss;
ss << "\n=================================================== INJECTION REPORT ========================================\n"//===================== \n"
<< ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n"
<< ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n";
if (unitType == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n";
}
ss << "=============================================================================================================";//=====================";
OpmLog::note(ss.str());
}
template <typename Scalar>
void LogOutputHelper<Scalar>::endInjectionReport_() const
{
const auto ss = std::string { ":--------:-----------:------:------:------:-----------:-----------:-----------:-----------:--------:--------:" };
OpmLog::note(ss);
}
template<class Scalar>
void LogOutputHelper<Scalar>::
outputInjectionReportRecord_(const std::vector<Scalar>& wellInj,
const std::vector<std::string>& wellInjNames) const
{
const auto isWellRecord =
wellInj[WellProdDataType::WellLocationi] >= 1;
std::ostringstream ss;
ss << std::right << std::fixed << std::setprecision(0) << ':'
<< std::setw(8) << wellInjNames[WellInjDataType::WellName] << ':';
if (! isWellRecord) {
ss << std::setw(11) << "" << ':';
} else {
ss << std::setw( 5) << wellInj[WellInjDataType::WellLocationi] << ','
<< std::setw( 5) << wellInj[WellInjDataType::WellLocationj] << ':';
}
ss << std::setw( 6) << wellInjNames[WellInjDataType::CTRLModeOil] << ':'
<< std::setw( 6) << wellInjNames[WellInjDataType::CTRLModeWat] << ':'
<< std::setw( 6) << wellInjNames[WellInjDataType::CTRLModeGas] << ':' << std::setprecision(1)
<< std::setw(11) << wellInj[WellInjDataType::OilRate] << ':'
<< std::setw(11) << wellInj[WellInjDataType::WaterRate] << ':'
<< std::setw(11) << wellInj[WellInjDataType::GasRate] << ':'
<< std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ':';
if (! isWellRecord) {
ss << std::setw(8) << "" << ':' << std::setw(8) << "" << ':'; //wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
} else {
ss << std::setw(8) << wellInj[WellInjDataType::BHP] << ':'
<< std::setw(8) << wellInj[WellInjDataType::THP] << ':'; //wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
}
OpmLog::note(ss.str());
}
template <typename Scalar>
void LogOutputHelper<Scalar>::beginProductionReport_() const
{
const auto unitType = this->eclState_.getUnits().getType();
std::ostringstream ss;
ss << "\n======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n"
<< ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n"
<< ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n";
if (unitType == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n";
} else if (unitType == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n";
}
ss << "=================================================================================================================================";//===================";
OpmLog::note(ss.str());
}
template <typename Scalar>
void LogOutputHelper<Scalar>::endProductionReport_() const
{
std::ostringstream ss;
ss << ':' << std::setfill ('-') << std::setw (9) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw ( 5) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw (12) << ':'
<< std::setfill ('-') << std::setw (11) << ':'
<< std::setfill ('-') << std::setw (13) << ':'
<< std::setfill ('-') << std::setw ( 9) << ':'
<< std::setfill ('-') << std::setw ( 9) << ':';
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
outputProductionReportRecord_(const std::vector<Scalar>& wellProd,
const std::vector<std::string>& wellProdNames) const
{
const auto isWellRecord =
wellProd[WellProdDataType::WellLocationi] >= 1;
std::ostringstream ss;
ss << std::right << std::fixed << ':'
<< std::setw(8) << wellProdNames[WellProdDataType::WellName] << ':';
if (! isWellRecord) {
ss << std::setprecision(0) << std::setw(11) << "" << ':';
} else {
ss << std::setprecision(0)
<< std::setw(5) << wellProd[WellProdDataType::WellLocationi] << ','
<< std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ':';
}
ss << std::setw( 4) << wellProdNames[WellProdDataType::CTRLMode] << ':' << std::setprecision(1)
<< std::setw(11) << wellProd[WellProdDataType::OilRate] << ':'
<< std::setw(11) << wellProd[WellProdDataType::WaterRate] << ':'
<< std::setw(11) << wellProd[WellProdDataType::GasRate] << ':'
<< std::setw(11) << wellProd[WellProdDataType::FluidResVol] << ':' << std::setprecision(3)
<< std::setw(11) << wellProd[WellProdDataType::WaterCut] << ':' << std::setprecision(2)
<< std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << ':' << std::setprecision(4)
<< std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << ':' << std::setprecision(1);
if (! isWellRecord) {
ss << std::setw(8) << "" << ':' << std::setw(8) << "" << ':';
} else {
ss << std::setw(8) << wellProd[WellProdDataType::BHP] << ':'
<< std::setw(8) << wellProd[WellProdDataType::THP] << ':';
}
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
outputRegionFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> oip,
std::unordered_map<Inplace::Phase, Scalar> cip,
const Scalar pav,
const std::string& name,
const int reg) const
{
// don't output FIPNUM report if the region has no porv.
if (! (cip[Inplace::Phase::PoreVolume] > Scalar{0})) {
return;
}
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
ss << '\n';
if (reg == 0) {
ss << " ==================================================\n"
<< " : FIELD TOTALS :\n";
}
else {
ss << " ==================================================\n"
<< " : " << name << " REPORT REGION "
<< std::setw(8 - name.size()) << reg << " :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV = " << std::setw(14) << pav << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV= " << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume:\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- OIL SM3 ----------------:-- WAT SM3 --:--------------- GAS SM3 ---------------:\n";
} else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << std::fixed << std::setprecision(0)
<< " : PAV =" << std::setw(14) << pav << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV=" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume:\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- OIL STB ----------------:-- WAT STB --:--------------- GAS MSCF ----------------:\n";
}
ss << " : LIQUID VAPOUR TOTAL : TOTAL : FREE DISSOLVED TOTAL :" << "\n"
<< " :-------------------------:-------------------------------------------:----------------:-------------------------------------------:" << "\n"
<< " :CURRENTLY IN PLACE :" << std::setw(14) << cip[Inplace::Phase::OilInLiquidPhase]
<< std::setw(14) << cip[Inplace::Phase::OilInGasPhase]
<< std::setw(15) << cip[Inplace::Phase::OIL] << ":"
<< std::setw(14) << cip[Inplace::Phase::WATER] << " :"
<< std::setw(14) << (cip[Inplace::Phase::GasInGasPhase])
<< std::setw(14) << cip[Inplace::Phase::GasInLiquidPhase]
<< std::setw(15) << cip[Inplace::Phase::GAS] << ":\n"
<< " :-------------------------:-------------------------------------------:----------------:-------------------------------------------:\n"
<< " :ORIGINALLY IN PLACE :" << std::setw(14) << oip[Inplace::Phase::OilInLiquidPhase]
<< std::setw(14) << oip[Inplace::Phase::OilInGasPhase]
<< std::setw(15) << oip[Inplace::Phase::OIL] << ":"
<< std::setw(14) << oip[Inplace::Phase::WATER] << " :"
<< std::setw(14) << oip[Inplace::Phase::GasInGasPhase]
<< std::setw(14) << oip[Inplace::Phase::GasInLiquidPhase]
<< std::setw(15) << oip[Inplace::Phase::GAS] << ":\n";
if (reg == 0){
ss << " ====================================================================================================================================\n\n";
} else {
ss << " :-------------------------:-------------------------------------------:----------------:-------------------------------------------:\n";
ss << " ====================================================================================================================================\n\n";
}
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
outputResvFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> cipr,
const int reg) const
{
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
if (reg == 0) {
ss << "\n ===================================\n";
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : RESERVOIR VOLUMES RM3 :\n";
} else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : RESERVOIR VOLUMES RB :\n";
}
ss << " :---------:---------------:---------------:---------------:---------------:---------------:\n"
<< " : REGION : TOTAL PORE : PORE VOLUME : PORE VOLUME : PORE VOLUME : PORE VOLUME :\n"
<< " : : VOLUME : CONTAINING : CONTAINING : CONTAINING : CONTAINING :\n"
<< " : : : OIL : WATER : GAS : HYDRO-CARBON :\n"
<< " :---------:---------------:---------------:---------------:---------------:---------------\n";
ss << std::right << std::fixed << std::setprecision(0) << " :"
<< std::setw (8) << "FIELD" << " :";
} else {
ss << std::right << std::fixed << std::setprecision(0) << " :"
<< std::setw (8) << reg << " :";
}
ss << std::setw(15) << cipr[Inplace::Phase::DynamicPoreVolume] << ":"
<< std::setw(15) << cipr[Inplace::Phase::OilResVolume] << ":"
<< std::setw(15) << cipr[Inplace::Phase::WaterResVolume] << ":"
<< std::setw(15) << cipr[Inplace::Phase::GasResVolume] << ":"
<< std::setw(15) << cipr[Inplace::Phase::OilResVolume] +
cipr[Inplace::Phase::GasResVolume] << ":";
OpmLog::note(ss.str());
}
template<class Scalar>
void LogOutputHelper<Scalar>::
fipUnitConvert_(std::unordered_map<Inplace::Phase, Scalar>& fip) const
{
const UnitSystem& units = eclState_.getUnits();
using M = UnitSystem::measure;
const auto unit_map = std::unordered_map<Inplace::Phase, M> {
{Inplace::Phase::WATER, M::liquid_surface_volume},
{Inplace::Phase::OIL, M::liquid_surface_volume},
{Inplace::Phase::OilInLiquidPhase, M::liquid_surface_volume},
{Inplace::Phase::OilInGasPhase, M::liquid_surface_volume},
{Inplace::Phase::GAS, M::gas_surface_volume},
{Inplace::Phase::GasInLiquidPhase, M::gas_surface_volume},
{Inplace::Phase::GasInGasPhase, M::gas_surface_volume},
{Inplace::Phase::PoreVolume, M::volume},
{Inplace::Phase::DynamicPoreVolume, M::volume},
{Inplace::Phase::WaterResVolume, M::volume},
{Inplace::Phase::OilResVolume, M::volume},
{Inplace::Phase::GasResVolume, M::volume},
{Inplace::Phase::SALT, M::mass},
{Inplace::Phase::CO2InWaterPhase, M::moles},
{Inplace::Phase::CO2InGasPhaseInMob, M::moles},
{Inplace::Phase::CO2InGasPhaseMob, M::moles},
{Inplace::Phase::CO2InGasPhaseInMobKrg, M::moles},
{Inplace::Phase::CO2InGasPhaseMobKrg, M::moles},
{Inplace::Phase::WaterInWaterPhase, M::liquid_surface_volume},
{Inplace::Phase::WaterInGasPhase, M::liquid_surface_volume},
{Inplace::Phase::CO2Mass, M::mass},
{Inplace::Phase::CO2MassInWaterPhase, M::mass},
{Inplace::Phase::CO2MassInGasPhase, M::mass},
{Inplace::Phase::CO2MassInGasPhaseInMob, M::mass},
{Inplace::Phase::CO2MassInGasPhaseMob, M::mass},
{Inplace::Phase::CO2MassInGasPhaseInMobKrg, M::mass},
{Inplace::Phase::CO2MassInGasPhaseMobKrg, M::mass},
{Inplace::Phase::CO2MassInGasPhaseEffectiveTrapped, M::mass},
{Inplace::Phase::CO2MassInGasPhaseEffectiveUnTrapped, M::mass},
{Inplace::Phase::CO2MassInGasPhaseMaximumTrapped, M::mass},
{Inplace::Phase::CO2MassInGasPhaseMaximumUnTrapped, M::mass},
};
for (auto& [phase, value] : fip) {
auto unitPos = unit_map.find(phase);
if (unitPos != unit_map.end()) {
value = units.from_si(unitPos->second, value);
}
}
}
template<class Scalar>
void LogOutputHelper<Scalar>::
pressureUnitConvert_(Scalar& pav) const
{
pav = eclState_.getUnits()
.from_si(UnitSystem::measure::pressure, pav);
}
template class LogOutputHelper<double>;
} // namespace Opm