opm-simulators/opm/simulators/wells/MultisegmentWellEval.cpp
2024-05-22 14:24:22 +02:00

615 lines
27 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellEval.hpp>
#include <opm/input/eclipse/Schedule/MSW/WellSegments.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/timestepping/ConvergenceReport.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellConvergence.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <fmt/format.h>
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <numeric>
#include <utility>
#include <vector>
namespace Opm
{
template<typename FluidSystem, typename Indices>
MultisegmentWellEval<FluidSystem,Indices>::
MultisegmentWellEval(WellInterfaceIndices<FluidSystem,Indices>& baseif)
: MultisegmentWellGeneric<Scalar>(baseif)
, baseif_(baseif)
, linSys_(*this)
, primary_variables_(baseif)
, segments_(this->numberOfSegments(), baseif)
, cell_perforation_depth_diffs_(baseif_.numPerfs(), 0.0)
, cell_perforation_pressure_diffs_(baseif_.numPerfs(), 0.0)
{
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
initMatrixAndVectors(const int num_cells)
{
linSys_.init(num_cells, baseif_.numPerfs(),
baseif_.cells(), segments_.inlets(),
segments_.perforations());
primary_variables_.resize(this->numberOfSegments());
}
template<typename FluidSystem, typename Indices>
ConvergenceReport
MultisegmentWellEval<FluidSystem,Indices>::
getWellConvergence(const WellState<Scalar>& well_state,
const std::vector<Scalar>& B_avg,
DeferredLogger& deferred_logger,
const Scalar max_residual_allowed,
const Scalar tolerance_wells,
const Scalar relaxed_inner_tolerance_flow_ms_well,
const Scalar tolerance_pressure_ms_wells,
const Scalar relaxed_inner_tolerance_pressure_ms_well,
const bool relax_tolerance,
const bool well_is_stopped) const
{
assert(int(B_avg.size()) == baseif_.numComponents());
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
std::vector<std::vector<Scalar>> abs_residual(this->numberOfSegments(),
std::vector<Scalar>(numWellEq, 0.0));
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
abs_residual[seg][eq_idx] = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
std::vector<Scalar> maximum_residual(numWellEq, 0.0);
ConvergenceReport report;
// TODO: the following is a little complicated, maybe can be simplified in some way?
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const Scalar flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
if (flux_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = flux_residual;
}
} else { // pressure or control equation
// for the top segment (seg == 0), it is control equation, will be checked later separately
if (seg > 0) {
// Pressure equation
const Scalar pressure_residual = abs_residual[seg][eq_idx];
if (pressure_residual > maximum_residual[eq_idx]) {
maximum_residual[eq_idx] = pressure_residual;
}
}
}
}
}
using CR = ConvergenceReport;
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
if (eq_idx < baseif_.numComponents()) { // phase or component mass equations
const Scalar flux_residual = maximum_residual[eq_idx];
// TODO: the report can not handle the segment number yet.
if (std::isnan(flux_residual)) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::NotANumber, eq_idx, baseif_.name()});
} else if (flux_residual > max_residual_allowed) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::TooLarge, eq_idx, baseif_.name()});
} else if (!relax_tolerance && flux_residual > tolerance_wells) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
} else if (flux_residual > relaxed_inner_tolerance_flow_ms_well) {
report.setWellFailed({CR::WellFailure::Type::MassBalance, CR::Severity::Normal, eq_idx, baseif_.name()});
}
} else { // pressure equation
const Scalar pressure_residual = maximum_residual[eq_idx];
const int dummy_component = -1;
if (std::isnan(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::NotANumber, dummy_component, baseif_.name()});
} else if (std::isinf(pressure_residual)) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::TooLarge, dummy_component, baseif_.name()});
} else if (!relax_tolerance && pressure_residual > tolerance_pressure_ms_wells) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
} else if (pressure_residual > relaxed_inner_tolerance_pressure_ms_well) {
report.setWellFailed({CR::WellFailure::Type::Pressure, CR::Severity::Normal, dummy_component, baseif_.name()});
}
}
}
WellConvergence(baseif_).
checkConvergenceControlEq(well_state,
{tolerance_pressure_ms_wells,
tolerance_pressure_ms_wells,
tolerance_wells,
tolerance_wells,
max_residual_allowed},
std::abs(linSys_.residual()[0][SPres]),
well_is_stopped,
report,
deferred_logger);
// for stopped well, we do not enforce the following checking to avoid dealing with sign of near-zero values
// for BHP or THP controlled wells, we need to make sure the flow direction is correct
if (!well_is_stopped && baseif_.isPressureControlled(well_state)) {
// checking the flow direction
const Scalar sign = baseif_.isProducer() ? -1. : 1.;
const auto weight_total_flux = this->primary_variables_.getWQTotal() * sign;
constexpr int dummy_phase = -1;
if (weight_total_flux < 0.) {
report.setWellFailed(
{CR::WellFailure::Type::WrongFlowDirection, CR::Severity::Normal, dummy_phase, baseif_.name()});
}
}
return report;
}
template<typename FluidSystem, typename Indices>
typename MultisegmentWellEval<FluidSystem,Indices>::EvalWell
MultisegmentWellEval<FluidSystem,Indices>::
extendEval(const Eval& in) const
{
EvalWell out = 0.0;
out.setValue(in.value());
for(int eq_idx = 0; eq_idx < Indices::numEq;++eq_idx) {
out.setDerivative(eq_idx, in.derivative(eq_idx));
}
return out;
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
assembleAccelerationPressureLoss(const int seg,
WellState<Scalar>& well_state)
{
// Computes and assembles p-drop due to acceleration
assert(seg != 0); // top segment can not enter here
auto& segments = well_state.well(baseif_.indexOfWell()).segments;
const auto& segment_set = this->segmentSet();
// Add segment head
const Scalar seg_area = segment_set[seg].crossArea();
const EvalWell signed_velocity_head = segments_.accelerationPressureLossContribution(seg, seg_area);
segments.pressure_drop_accel[seg] = signed_velocity_head.value();
const int seg_upwind = segments_.upwinding_segment(seg);
// acceleration term is *subtracted* from pressure equation
MultisegmentWellAssemble(baseif_).
assembleAccelerationTerm(seg, seg, seg_upwind, signed_velocity_head, linSys_);
if (seg != seg_upwind) {// special treatment for reverse flow
// extra derivatives are *added* to Jacobian (hence minus)
const EvalWell extra_derivatives = -segments_.accelerationPressureLossContribution(seg, seg_area, /*extra_derivatives*/ true);
MultisegmentWellAssemble(baseif_).
assemblePressureEqExtraDerivatives(seg, seg_upwind, extra_derivatives, linSys_);
}
// Subtract inlet head(s), opposite signs from above
for (const int inlet : segments_.inlets(seg)) {
// area used in formula is max of areas
const Scalar inlet_area = std::max(seg_area,
static_cast<Scalar>(segment_set[inlet].crossArea()));
const EvalWell signed_velocity_head_inlet = segments_.accelerationPressureLossContribution(inlet, inlet_area);
segments.pressure_drop_accel[seg] -= signed_velocity_head_inlet.value();
const int inlet_upwind = segments_.upwinding_segment(inlet);
MultisegmentWellAssemble(baseif_).
assembleAccelerationTerm(seg, inlet, inlet_upwind, -signed_velocity_head_inlet, linSys_);
if (inlet != inlet_upwind) {// special treatment for reverse flow
// extra derivatives are *added* to Jacobian (hence minus minus)
const EvalWell extra_derivatives_inlet = segments_.accelerationPressureLossContribution(inlet, inlet_area, /*extra_derivatives*/ true);
// in this case inlet_upwind = seg
MultisegmentWellAssemble(baseif_).
assemblePressureEqExtraDerivatives(seg, inlet_upwind, extra_derivatives_inlet, linSys_);
}
}
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
assembleDefaultPressureEq(const int seg,
WellState<Scalar>& well_state,
const bool use_average_density)
{
assert(seg != 0); // not top segment
const int seg_upwind = segments_.upwinding_segment(seg);
const bool reverseFlow = seg != seg_upwind; // special treatment for reverse flow
// for top segment, the well control equation will be used.
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
EvalWell extra_derivatives;
// we need to handle the pressure difference between the two segments
// hydrostatic pressure loss is assembled seperately at the end
// TODO: we might be able to add member variables to store these values, then we update well state
// after converged
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
if (this->frictionalPressureLossConsidered()) {
const auto friction_pressure_drop = segments_.getFrictionPressureLoss(seg);
if (reverseFlow){
// call function once again to obtain/assemble remaining derivatives
extra_derivatives = -segments_.getFrictionPressureLoss(seg, /*extra_reverse_flow_derivatives*/ true);
MultisegmentWellAssemble(baseif_).
assemblePressureEqExtraDerivatives(seg, seg_upwind, extra_derivatives, linSys_);
}
pressure_equation -= friction_pressure_drop;
segments.pressure_drop_friction[seg] = friction_pressure_drop.value();
}
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure, linSys_);
assembleAccelerationAndHydroPressureLosses(seg, well_state, use_average_density);
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
assembleICDPressureEq(const int seg,
const UnitSystem& unit_system,
WellState<Scalar>& well_state,
const SummaryState& summary_state,
const bool use_average_density,
DeferredLogger& deferred_logger)
{
// TODO: upwinding needs to be taken care of
// top segment can not be a spiral ICD device
assert(seg != 0);
if (const auto& segment = this->segmentSet()[seg];
(segment.segmentType() == Segment::SegmentType::VALVE) &&
(segment.valve().status() == Opm::ICDStatus::SHUT) ) { // we use a zero rate equation to handle SHUT valve
MultisegmentWellAssemble(baseif_).
assembleTrivialEq(seg, this->primary_variables_.eval(seg)[WQTotal].value(), linSys_);
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = 0.;
return;
}
// the pressure equation is something like
// p_seg - deltaP - p_outlet = 0.
// the major part is how to calculate the deltaP
const int seg_upwind = segments_.upwinding_segment(seg);
const bool reverseFlow = seg != seg_upwind; // special treatment for reverse flow
EvalWell pressure_equation = primary_variables_.getSegmentPressure(seg);
EvalWell icd_pressure_drop;
EvalWell extra_derivatives;
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
icd_pressure_drop = segments_.pressureDropSpiralICD(seg);
if (reverseFlow){
extra_derivatives = -segments_.pressureDropSpiralICD(seg, /*extra_reverse_flow_derivatives*/ true);
}
break;
case Segment::SegmentType::AICD :
icd_pressure_drop = segments_.pressureDropAutoICD(seg, unit_system);
if (reverseFlow){
extra_derivatives = -segments_.pressureDropAutoICD(seg, unit_system, /*extra_reverse_flow_derivatives*/ true);
}
break;
case Segment::SegmentType::VALVE :
icd_pressure_drop = segments_.pressureDropValve(seg, summary_state);
if (reverseFlow){
extra_derivatives = -segments_.pressureDropValve(seg, summary_state, /*extra_reverse_flow_derivatives*/ true);
}
break;
default: {
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Segment {} for well {} is not of ICD type",
this->segmentSet()[seg].segmentNumber(),
baseif_.name()),
deferred_logger);
}
}
if (reverseFlow){
MultisegmentWellAssemble(baseif_).
assemblePressureEqExtraDerivatives(seg, seg_upwind, extra_derivatives, linSys_);
}
pressure_equation = pressure_equation - icd_pressure_drop;
auto& ws = well_state.well(baseif_.indexOfWell());
ws.segments.pressure_drop_friction[seg] = icd_pressure_drop.value();
// contribution from the outlet segment
const int outlet_segment_index = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const EvalWell outlet_pressure = primary_variables_.getSegmentPressure(outlet_segment_index);
MultisegmentWellAssemble(baseif_).
assemblePressureEq(seg, seg_upwind, outlet_segment_index,
pressure_equation, outlet_pressure,
linSys_,
FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx),
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
assembleAccelerationAndHydroPressureLosses(seg, well_state, use_average_density);
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
assembleAccelerationAndHydroPressureLosses(const int seg,
WellState<Scalar>& well_state,
const bool use_average_density)
{
if (this->accelerationalPressureLossConsidered()) {
assembleAccelerationPressureLoss(seg, well_state);
}
// Since density derivatives are organized differently than what is required for assemblePressureEq,
// this part needs to be assembled separately. Optionally use average density variant.
const auto hydro_pressure_drop_seg = segments_.getHydroPressureLoss(seg, seg);
auto& ws = well_state.well(baseif_.indexOfWell());
auto& segments = ws.segments;
if (!use_average_density){
MultisegmentWellAssemble(baseif_).
assembleHydroPressureLoss(seg, seg, hydro_pressure_drop_seg, linSys_);
segments.pressure_drop_hydrostatic[seg] = hydro_pressure_drop_seg.value();
} else {
const int seg_outlet = this->segmentNumberToIndex(this->segmentSet()[seg].outletSegment());
const auto hydro_pressure_drop_outlet = segments_.getHydroPressureLoss(seg, seg_outlet);
MultisegmentWellAssemble(baseif_).
assembleHydroPressureLoss(seg, seg, 0.5*hydro_pressure_drop_seg, linSys_);
MultisegmentWellAssemble(baseif_).
assembleHydroPressureLoss(seg, seg_outlet, 0.5*hydro_pressure_drop_outlet, linSys_);
segments.pressure_drop_hydrostatic[seg] = 0.5*hydro_pressure_drop_seg.value() + 0.5*hydro_pressure_drop_outlet.value();
}
}
template<typename FluidSystem, typename Indices>
void
MultisegmentWellEval<FluidSystem,Indices>::
assemblePressureEq(const int seg,
const UnitSystem& unit_system,
WellState<Scalar>& well_state,
const SummaryState& summary_state,
const bool use_average_density,
DeferredLogger& deferred_logger)
{
switch(this->segmentSet()[seg].segmentType()) {
case Segment::SegmentType::SICD :
case Segment::SegmentType::AICD :
case Segment::SegmentType::VALVE : {
assembleICDPressureEq(seg, unit_system, well_state, summary_state, use_average_density, deferred_logger);
break;
}
default :
assembleDefaultPressureEq(seg, well_state, use_average_density);
}
}
template<typename FluidSystem, typename Indices>
std::pair<bool, std::vector<typename FluidSystem::Scalar> >
MultisegmentWellEval<FluidSystem,Indices>::
getFiniteWellResiduals(const std::vector<Scalar>& B_avg,
DeferredLogger& deferred_logger) const
{
assert(int(B_avg.size() ) == baseif_.numComponents());
std::vector<Scalar> residuals(numWellEq + 1, 0.0);
for (int seg = 0; seg < this->numberOfSegments(); ++seg) {
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
Scalar residual = 0.;
if (eq_idx < baseif_.numComponents()) {
residual = std::abs(linSys_.residual()[seg][eq_idx]) * B_avg[eq_idx];
} else {
if (seg > 0) {
residual = std::abs(linSys_.residual()[seg][eq_idx]);
}
}
if (std::isnan(residual) || std::isinf(residual)) {
deferred_logger.debug(fmt::format("nan or inf value for residual for well {} segment {} eq_idx {}",
baseif_.name(), seg, eq_idx));
return {false, residuals};
}
if (residual > residuals[eq_idx]) {
residuals[eq_idx] = residual;
}
}
}
// handling the control equation residual
{
const Scalar control_residual = std::abs(linSys_.residual()[0][numWellEq - 1]);
if (std::isnan(control_residual) || std::isinf(control_residual)) {
deferred_logger.debug(fmt::format("nan or inf value for control residual for well {}", baseif_.name()));
return {false, residuals};
}
residuals[numWellEq] = control_residual;
}
return {true, residuals};
}
template<typename FluidSystem, typename Indices>
typename MultisegmentWellEval<FluidSystem,Indices>::Scalar
MultisegmentWellEval<FluidSystem,Indices>::
getControlTolerance(const WellState<Scalar>& well_state,
const Scalar tolerance_wells,
const Scalar tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
Scalar control_tolerance = 0.;
const int well_index = baseif_.indexOfWell();
const auto& ws = well_state.well(well_index);
if (baseif_.isInjector() )
{
auto current = ws.injection_cmode;
switch(current) {
case Well::InjectorCMode::THP:
control_tolerance = tolerance_pressure_ms_wells;
break;
case Well::InjectorCMode::BHP:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::RATE:
case Well::InjectorCMode::RESV:
control_tolerance = tolerance_wells;
break;
case Well::InjectorCMode::GRUP:
control_tolerance = tolerance_wells;
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Unknown well control control types for well {}", baseif_.name()),
deferred_logger);
}
}
if (baseif_.isProducer() )
{
auto current = ws.production_cmode;
switch(current) {
case Well::ProducerCMode::THP:
control_tolerance = tolerance_pressure_ms_wells; // 0.1 bar
break;
case Well::ProducerCMode::BHP:
control_tolerance = tolerance_wells; // 0.01 bar
break;
case Well::ProducerCMode::ORAT:
case Well::ProducerCMode::WRAT:
case Well::ProducerCMode::GRAT:
case Well::ProducerCMode::LRAT:
case Well::ProducerCMode::RESV:
case Well::ProducerCMode::CRAT:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
case Well::ProducerCMode::GRUP:
control_tolerance = tolerance_wells; // smaller tolerance for rate control
break;
default:
OPM_DEFLOG_THROW(std::runtime_error,
fmt::format("Unknown well control control types for well {}", baseif_.name()),
deferred_logger);
}
}
return control_tolerance;
}
template<typename FluidSystem, typename Indices>
typename MultisegmentWellEval<FluidSystem,Indices>::Scalar
MultisegmentWellEval<FluidSystem,Indices>::
getResidualMeasureValue(const WellState<Scalar>& well_state,
const std::vector<Scalar>& residuals,
const Scalar tolerance_wells,
const Scalar tolerance_pressure_ms_wells,
DeferredLogger& deferred_logger) const
{
assert(int(residuals.size()) == numWellEq + 1);
const Scalar rate_tolerance = tolerance_wells;
[[maybe_unused]] int count = 0;
Scalar sum = 0;
for (int eq_idx = 0; eq_idx < numWellEq - 1; ++eq_idx) {
if (residuals[eq_idx] > rate_tolerance) {
sum += residuals[eq_idx] / rate_tolerance;
++count;
}
}
const Scalar pressure_tolerance = tolerance_pressure_ms_wells;
if (residuals[SPres] > pressure_tolerance) {
sum += residuals[SPres] / pressure_tolerance;
++count;
}
const Scalar control_tolerance = getControlTolerance(well_state,
tolerance_wells,
tolerance_pressure_ms_wells,
deferred_logger);
if (residuals[SPres + 1] > control_tolerance) {
sum += residuals[SPres + 1] / control_tolerance;
++count;
}
return sum;
}
#define INSTANCE(...) \
template class MultisegmentWellEval<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<1u,0u,0u,0u,false,false,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,true,false,0u,0u>)
} // namespace Opm