opm-simulators/opm/simulators/aquifers/AquiferFetkovich.hpp
Bård Skaflestad bd9b9a7118 Prepare to Save/Restore Richer Set of Aquifer Values
This commit adds logic to communicate more dynamic aquifer values
between the simulation and I/O layers.  In particular, we ensure
that we allocate the 'aquFet' and 'aquCT' substructures of the
dynamic aquifer data as appropriate and that we collect this
information on the I/O rank as part of the restart output process.
We furthermore make the 'ParallelRestart' facility aware of dynamic
aquifer data in preparation of loading these values from the restart
file.
2021-05-28 14:47:17 +02:00

162 lines
5.1 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFETP_HEADER_INCLUDED
#define OPM_AQUIFETP_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferInterface.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <exception>
#include <stdexcept>
namespace Opm
{
template <typename TypeTag>
class AquiferFetkovich : public AquiferInterface<TypeTag>
{
public:
typedef AquiferInterface<TypeTag> Base;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
using Base::waterCompIdx;
using Base::waterPhaseIdx;
AquiferFetkovich(const std::vector<Aquancon::AquancCell>& connections,
const Simulator& ebosSimulator,
const Aquifetp::AQUFETP_data& aqufetp_data)
: Base(aqufetp_data.aquiferID, connections, ebosSimulator)
, aqufetp_data_(aqufetp_data)
{
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->ebos_simulator_.timeStepSize();
}
aquifer_pressure_ = aquiferPressure();
}
data::AquiferData aquiferData() const
{
// TODO: how to unify the two functions?
auto data = data::AquiferData{};
data.aquiferID = this->aquiferID();
data.pressure = this->aquifer_pressure_;
data.fluxRate = std::accumulate(this->Qai_.begin(), this->Qai_.end(), 0.0,
[](const double flux, const auto& q) -> double
{
return flux + q.value();
});
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
data.type = data::AquiferType::Fetkovich;
data.aquFet = std::make_shared<data::FetkovichData>();
return data;
}
protected:
// Aquifer Fetkovich Specific Variables
// TODO: using const reference here will cause segmentation fault, which is very strange
const Aquifetp::AQUFETP_data aqufetp_data_;
Scalar aquifer_pressure_; // aquifer
void assignRestartData(const data::AquiferData& xaq) override
{
if (xaq.type != data::AquiferType::Fetkovich) {
throw std::invalid_argument {
"Analytic aquifer data for unexpected aquifer "
"type passed to Fetkovich aquifer"
};
}
this->aquifer_pressure_ = xaq.pressure;
}
inline Eval dpai(int idx)
{
const Eval dp = aquifer_pressure_ - this->pressure_current_.at(idx)
+ this->rhow_[idx] * this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
return dp;
}
// This function implements Eq 5.12 of the EclipseTechnicalDescription
inline Scalar aquiferPressure()
{
Scalar Flux = this->W_flux_.value();
const auto& comm = this->ebos_simulator_.vanguard().grid().comm();
comm.sum(&Flux, 1);
Scalar pa_ = this->pa0_ - Flux / (aqufetp_data_.C_t * aqufetp_data_.V0);
return pa_;
}
inline void calculateAquiferConstants() override
{
this->Tc_ = (aqufetp_data_.C_t * aqufetp_data_.V0) / aqufetp_data_.J;
}
// This function implements Eq 5.14 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const Scalar td_Tc_ = simulator.timeStepSize() / this->Tc_;
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
this->Qai_.at(idx) = this->alphai_[idx] * aqufetp_data_.J * dpai(idx) * coef;
}
inline void calculateAquiferCondition() override
{
this->rhow_.resize(this->size(), 0.);
if (this->solution_set_from_restart_) {
return;
}
if (!aqufetp_data_.p0.first) {
this->pa0_ = this->calculateReservoirEquilibrium();
} else {
this->pa0_ = aqufetp_data_.p0.second;
}
aquifer_pressure_ = this->pa0_;
}
virtual Scalar aquiferDepth() const override
{
return aqufetp_data_.d0;
}
}; // Class AquiferFetkovich
} // namespace Opm
#endif