mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-20 01:32:57 -06:00
0068c175a7
No extra equation is added for polymer in the well equation. Seperate executables are added for polymer: flow_ebos_polymer and solvent: flow_ebos_solvent Tested and verified on the test cases in polymer_test_suite This PR should not effect the performance and results of the blackoil simulator
3235 lines
124 KiB
C++
3235 lines
124 KiB
C++
|
|
|
|
|
|
namespace Opm {
|
|
|
|
template<typename TypeTag>
|
|
StandardWellsDense<TypeTag>::
|
|
StandardWellsDense(const Wells* wells_arg,
|
|
WellCollection* well_collection,
|
|
const std::vector< const Well* >& wells_ecl,
|
|
const ModelParameters& param,
|
|
const bool terminal_output,
|
|
const int current_timeIdx)
|
|
: wells_active_(wells_arg!=nullptr)
|
|
, wells_(wells_arg)
|
|
, wells_ecl_(wells_ecl)
|
|
, well_collection_(well_collection)
|
|
, param_(param)
|
|
, terminal_output_(terminal_output)
|
|
, has_solvent_(GET_PROP_VALUE(TypeTag, EnableSolvent))
|
|
, has_polymer_(GET_PROP_VALUE(TypeTag, EnablePolymer))
|
|
, current_timeIdx_(current_timeIdx)
|
|
, well_perforation_efficiency_factors_((wells_!=nullptr ? wells_->well_connpos[wells_->number_of_wells] : 0), 1.0)
|
|
, well_perforation_densities_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
|
|
, well_perforation_pressure_diffs_( wells_ ? wells_arg->well_connpos[wells_arg->number_of_wells] : 0)
|
|
, wellVariables_( wells_ ? (wells_arg->number_of_wells * numWellEq) : 0)
|
|
, F0_(wells_ ? (wells_arg->number_of_wells * numWellEq) : 0 )
|
|
{
|
|
if( wells_ )
|
|
{
|
|
invDuneD_.setBuildMode( Mat::row_wise );
|
|
duneC_.setBuildMode( Mat::row_wise );
|
|
duneB_.setBuildMode( Mat::row_wise );
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
init(const PhaseUsage phase_usage_arg,
|
|
const std::vector<bool>& active_arg,
|
|
const VFPProperties* vfp_properties_arg,
|
|
const double gravity_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const std::vector<double>& pv_arg,
|
|
const RateConverterType* rate_converter,
|
|
long int global_nc,
|
|
const auto& grid)
|
|
{
|
|
// has to be set always for the convergence check!
|
|
global_nc_ = global_nc;
|
|
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
phase_usage_ = phase_usage_arg;
|
|
active_ = active_arg;
|
|
vfp_properties_ = vfp_properties_arg;
|
|
gravity_ = gravity_arg;
|
|
cell_depths_ = extractPerfData(depth_arg);
|
|
pv_ = pv_arg;
|
|
rate_converter_ = rate_converter;
|
|
|
|
calculateEfficiencyFactors();
|
|
|
|
// setup sparsity pattern for the matrices
|
|
//[A B^T [x = [ res
|
|
// C D] x_well] res_well]
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
const int nc = numCells();
|
|
|
|
#ifndef NDEBUG
|
|
const auto pu = phase_usage_;
|
|
const int np = pu.num_phases;
|
|
|
|
// assumes the gas fractions are stored after water fractions
|
|
// WellVariablePositions needs to be changed for 2p runs
|
|
assert (np == 3 || (np == 2 && !pu.phase_used[Gas]) );
|
|
#endif
|
|
|
|
// set invDuneD
|
|
invDuneD_.setSize( nw, nw, nw );
|
|
|
|
// set duneC
|
|
duneC_.setSize( nw, nc, nperf );
|
|
|
|
// set duneB
|
|
duneB_.setSize( nw, nc, nperf );
|
|
|
|
for (auto row=invDuneD_.createbegin(), end = invDuneD_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
row.insert(row.index());
|
|
}
|
|
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row!=end; ++row) {
|
|
// Add nonzeros for diagonal
|
|
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
|
|
const int cell_idx = wells().well_cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row!=end; ++row) {
|
|
for (int perf = wells().well_connpos[row.index()] ; perf < wells().well_connpos[row.index()+1]; ++perf) {
|
|
const int cell_idx = wells().well_cells[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize( nw );
|
|
|
|
// resize temporary class variables
|
|
Cx_.resize( duneC_.N() );
|
|
invDrw_.resize( invDuneD_.N() );
|
|
|
|
if (has_polymer_)
|
|
{
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
computeRepRadiusPerfLength(grid);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
SimulatorReport
|
|
StandardWellsDense<TypeTag>::
|
|
assemble(Simulator& ebosSimulator,
|
|
const int iterationIdx,
|
|
const double dt,
|
|
WellState& well_state)
|
|
{
|
|
|
|
if (iterationIdx == 0) {
|
|
prepareTimeStep(ebosSimulator, well_state);
|
|
}
|
|
|
|
SimulatorReport report;
|
|
if ( ! wellsActive() ) {
|
|
return report;
|
|
}
|
|
|
|
updateWellControls(well_state);
|
|
// Set the primary variables for the wells
|
|
setWellVariables(well_state);
|
|
|
|
if (iterationIdx == 0) {
|
|
computeWellConnectionPressures(ebosSimulator, well_state);
|
|
computeAccumWells();
|
|
}
|
|
|
|
if (param_.solve_welleq_initially_ && iterationIdx == 0) {
|
|
// solve the well equations as a pre-processing step
|
|
report = solveWellEq(ebosSimulator, dt, well_state);
|
|
}
|
|
assembleWellEq(ebosSimulator, dt, well_state, false);
|
|
|
|
report.converged = true;
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells)
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
const int numComp = numComponents();
|
|
const int np = numPhases();
|
|
|
|
// clear all entries
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
invDuneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator.model().linearizer().residual();
|
|
|
|
const double volume = 0.002831684659200; // 0.1 cu ft;
|
|
for (int w = 0; w < nw; ++w) {
|
|
bool allow_cf = allow_cross_flow(w, ebosSimulator);
|
|
const EvalWell& bhp = getBhp(w);
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
|
|
const int cell_idx = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
std::vector<EvalWell> cq_s(numComp,0.0);
|
|
std::vector<EvalWell> mob(numComp, 0.0);
|
|
getMobility(ebosSimulator, perf, cell_idx, mob);
|
|
computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
|
|
|
|
if (has_polymer_) {
|
|
if (PolymerModule::hasPlyshlog()) {
|
|
// compute the well water velocity based on the perforation rates.
|
|
double area = 2 * M_PI * wells_rep_radius_[perf] * wells_perf_length_[perf];
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
const auto& scaledDrainageInfo =
|
|
materialLawManager->oilWaterScaledEpsInfoDrainage(cell_idx);
|
|
const Scalar& Swcr = scaledDrainageInfo.Swcr;
|
|
const EvalWell poro = extendEval(intQuants.porosity());
|
|
const EvalWell Sw = extendEval(intQuants.fluidState().saturation(flowPhaseToEbosPhaseIdx(Water)));
|
|
// guard against zero porosity and no water
|
|
const EvalWell denom = Opm::max( (area * poro * (Sw - Swcr)), 1e-12);
|
|
EvalWell waterVelocity = cq_s[ Water ] / denom * extendEval(intQuants.fluidState().invB(flowPhaseToEbosPhaseIdx(Water)));
|
|
EvalWell polymerConcentration = extendEval(intQuants.polymerConcentration());
|
|
|
|
if (PolymerModule::hasShrate()) {
|
|
// TODO Use the same conversion as for the reservoar equations.
|
|
// Need the "permeability" of the well?
|
|
// For now use the same formula as in legacy.
|
|
waterVelocity *= PolymerModule::shrate( intQuants.pvtRegionIndex() ) / wells_bore_diameter_[perf];
|
|
}
|
|
EvalWell shearFactor = PolymerModule::computeShearFactor(polymerConcentration,
|
|
intQuants.pvtRegionIndex(),
|
|
waterVelocity);
|
|
|
|
// modify the mobility with the shear factor and recompute the well fluxes.
|
|
mob[ Water ] /= shearFactor;
|
|
computeWellFlux(w, wells().WI[perf], intQuants, mob, bhp, wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
|
|
}
|
|
}
|
|
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[componentIdx] * well_perforation_efficiency_factors_[perf];
|
|
|
|
if (!only_wells) {
|
|
// subtract sum of component fluxes in the reservoir equation.
|
|
// need to consider the efficiency factor
|
|
ebosResid[cell_idx][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.value();
|
|
}
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[w][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s[componentIdx].value();
|
|
|
|
// assemble the jacobians
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
if (!only_wells) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
ebosJac[cell_idx][cell_idx][flowPhaseToEbosCompIdx(componentIdx)][flowToEbosPvIdx(pvIdx)] -= cq_s_effective.derivative(pvIdx);
|
|
duneB_[w][cell_idx][flowToEbosPvIdx(pvIdx)][flowPhaseToEbosCompIdx(componentIdx)] -= cq_s_effective.derivative(pvIdx+numEq); // intput in transformed matrix
|
|
}
|
|
invDuneD_[w][w][flowPhaseToEbosCompIdx(componentIdx)][pvIdx] -= cq_s[componentIdx].derivative(pvIdx+numEq);
|
|
}
|
|
|
|
// add trivial equation for 2p cases (Only support water + oil)
|
|
if (numComp == 2) {
|
|
assert(!active_[ Gas ]);
|
|
invDuneD_[w][w][Gas][Gas] = 1.0;
|
|
}
|
|
|
|
// Store the perforation phase flux for later usage.
|
|
if (has_solvent_ && componentIdx == solventSaturationIdx) {// if (flowPhaseToEbosCompIdx(componentIdx) == Solvent)
|
|
well_state.perfRateSolvent()[perf] = cq_s[componentIdx].value();
|
|
} else {
|
|
well_state.perfPhaseRates()[perf*np + componentIdx] = cq_s[componentIdx].value();
|
|
}
|
|
}
|
|
|
|
// Store the perforation pressure for later usage.
|
|
well_state.perfPress()[perf] = well_state.bhp()[w] + wellPerforationPressureDiffs()[perf];
|
|
}
|
|
|
|
// add vol * dF/dt + Q to the well equations;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
EvalWell resWell_loc = (wellSurfaceVolumeFraction(w, componentIdx) - F0_[w + nw*componentIdx]) * volume / dt;
|
|
resWell_loc += getQs(w, componentIdx);
|
|
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
|
|
invDuneD_[w][w][componentIdx][pvIdx] += resWell_loc.derivative(pvIdx+numEq);
|
|
}
|
|
resWell_[w][componentIdx] += resWell_loc.value();
|
|
}
|
|
}
|
|
|
|
// do the local inversion of D.
|
|
localInvert( invDuneD_ );
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag >::
|
|
getMobility(const Simulator& ebosSimulator, const int perf, const int cell_idx, std::vector<EvalWell>& mob) const
|
|
{
|
|
|
|
const int np = wells().number_of_phases;
|
|
assert (int(mob.size()) == numComponents());
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = wells().sat_table_id[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(intQuants.mobility(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent_) {
|
|
mob[solventCompIdx] = extendEval(intQuants.solventMobility());
|
|
}
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
mob[phase] = extendEval(relativePerms[ebosPhaseIdx] / intQuants.fluidState().viscosity(ebosPhaseIdx));
|
|
}
|
|
|
|
// this may not work if viscosity and relperms has been modified?
|
|
if (has_solvent_) {
|
|
OPM_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
allow_cross_flow(const int w, const Simulator& ebosSimulator) const
|
|
{
|
|
if (wells().allow_cf[w]) {
|
|
return true;
|
|
}
|
|
|
|
// check for special case where all perforations have cross flow
|
|
// then the wells must allow for cross flow
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
const int cell_idx = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell bhp = getBhp(w);
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + wellPerforationPressureDiffs()[perf];
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
if (drawdown.value() < 0 && wells().type[w] == INJECTOR) {
|
|
return false;
|
|
}
|
|
|
|
if (drawdown.value() > 0 && wells().type[w] == PRODUCER) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
localInvert(Mat& istlA) const
|
|
{
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
//std::cout << (*col) << std::endl;
|
|
(*col).invert();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
print(Mat& istlA) const
|
|
{
|
|
for (auto row = istlA.begin(), rowend = istlA.end(); row != rowend; ++row ) {
|
|
for (auto col = row->begin(), colend = row->end(); col != colend; ++col ) {
|
|
std::cout << row.index() << " " << col.index() << "/n \n"<<(*col) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
apply( BVector& r) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
assert( invDrw_.size() == invDuneD_.N() );
|
|
|
|
invDuneD_.mv(resWell_,invDrw_);
|
|
duneB_.mmtv(invDrw_, r);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
assert( Cx_.size() == duneC_.N() );
|
|
|
|
BVector& invDCx = invDrw_;
|
|
assert( invDCx.size() == invDuneD_.N());
|
|
|
|
duneC_.mv(x, Cx_);
|
|
invDuneD_.mv(Cx_, invDCx);
|
|
duneB_.mmtv(invDCx,Ax);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
applyScaleAdd(const Scalar alpha, const BVector& x, BVector& Ax) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
if( scaleAddRes_.size() != Ax.size() ) {
|
|
scaleAddRes_.resize( Ax.size() );
|
|
}
|
|
|
|
scaleAddRes_ = 0.0;
|
|
apply( x, scaleAddRes_ );
|
|
Ax.axpy( alpha, scaleAddRes_ );
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
recoverVariable(const BVector& x, BVector& xw) const
|
|
{
|
|
if ( ! localWellsActive() ) {
|
|
return;
|
|
}
|
|
BVector resWell = resWell_;
|
|
duneC_.mmv(x, resWell);
|
|
invDuneD_.mv(resWell, xw);
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
flowToEbosPvIdx( const int flowPv ) const
|
|
{
|
|
const int flowToEbos[ 3 ] = {
|
|
BlackoilIndices::pressureSwitchIdx,
|
|
BlackoilIndices::waterSaturationIdx,
|
|
BlackoilIndices::compositionSwitchIdx
|
|
};
|
|
|
|
if (flowPv > 2 )
|
|
return flowPv;
|
|
|
|
return flowToEbos[ flowPv ];
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
flowPhaseToEbosCompIdx( const int phaseIdx ) const
|
|
{
|
|
const int phaseToComp[ 3 ] = { FluidSystem::waterCompIdx, FluidSystem::oilCompIdx, FluidSystem::gasCompIdx};
|
|
if (phaseIdx > 2 )
|
|
return phaseIdx;
|
|
return phaseToComp[ phaseIdx ];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
flowPhaseToEbosPhaseIdx( const int phaseIdx ) const
|
|
{
|
|
assert(phaseIdx < 3);
|
|
const int flowToEbos[ 3 ] = { FluidSystem::waterPhaseIdx, FluidSystem::oilPhaseIdx, FluidSystem::gasPhaseIdx };
|
|
return flowToEbos[ phaseIdx ];
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>
|
|
StandardWellsDense<TypeTag>::
|
|
extractPerfData(const std::vector<double>& in) const
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
std::vector<double> out(nperf);
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells().well_connpos[w] ; perf < wells().well_connpos[w+1]; ++perf) {
|
|
const int well_idx = wells().well_cells[perf];
|
|
out[perf] = in[well_idx];
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
numPhases() const
|
|
{
|
|
return wells().number_of_phases;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
numCells() const
|
|
{
|
|
return pv_.size();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
resetWellControlFromState(const WellState& xw) const
|
|
{
|
|
const int nw = wells_->number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells_->ctrls[w];
|
|
well_controls_set_current( wc, xw.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const Wells&
|
|
StandardWellsDense<TypeTag>::
|
|
wells() const
|
|
{
|
|
assert(wells_ != 0);
|
|
return *(wells_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const Wells*
|
|
StandardWellsDense<TypeTag>::
|
|
wellsPointer() const
|
|
{
|
|
return wells_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
wellsActive() const
|
|
{
|
|
return wells_active_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
setWellsActive(const bool wells_active)
|
|
{
|
|
wells_active_ = wells_active;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
localWellsActive() const
|
|
{
|
|
return wells_ ? (wells_->number_of_wells > 0 ) : false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
int
|
|
StandardWellsDense<TypeTag>::
|
|
numWellVars() const
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return 0;
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
return numWellEq * nw;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWellsDense<TypeTag>::
|
|
wellPerforationDensities() const
|
|
{
|
|
return well_perforation_densities_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWellsDense<TypeTag>::
|
|
wellPerforationPressureDiffs() const
|
|
{
|
|
return well_perforation_pressure_diffs_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
extendEval(const Eval& in) const {
|
|
EvalWell out = 0.0;
|
|
out.setValue(in.value());
|
|
for(int eqIdx = 0; eqIdx < numEq;++eqIdx) {
|
|
out.setDerivative(eqIdx, in.derivative(flowToEbosPvIdx(eqIdx)));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
setWellVariables(const WellState& xw)
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
// for two-phase numComp < numEq
|
|
//const int numComp = numComponents();
|
|
for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
|
|
for (int w = 0; w < nw; ++w) {
|
|
const unsigned int idx = nw * eqIdx + w;
|
|
assert( idx < wellVariables_.size() );
|
|
assert( idx < xw.wellSolutions().size() );
|
|
EvalWell& eval = wellVariables_[ idx ];
|
|
|
|
eval = 0.0;
|
|
eval.setValue( xw.wellSolutions()[ idx ] );
|
|
eval.setDerivative(numEq + eqIdx, 1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
print(const EvalWell& in) const
|
|
{
|
|
std::cout << in.value() << std::endl;
|
|
for (int i = 0; i < in.size; ++i) {
|
|
std::cout << in.derivative(i) << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeAccumWells()
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
for (int eqIdx = 0; eqIdx < numWellEq; ++eqIdx) {
|
|
for (int w = 0; w < nw; ++w) {
|
|
F0_[w + nw * eqIdx] = wellSurfaceVolumeFraction(w, eqIdx).value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellFlux(const int& w, const double& Tw,
|
|
const IntensiveQuantities& intQuants,
|
|
const std::vector<EvalWell>& mob_perfcells_dense,
|
|
const EvalWell& bhp, const double& cdp,
|
|
const bool& allow_cf, std::vector<EvalWell>& cq_s) const
|
|
{
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
const int np = wells().number_of_phases;
|
|
const int numComp = numComponents();
|
|
std::vector<EvalWell> cmix_s(numComp,0.0);
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cmix_s[componentIdx] = wellSurfaceVolumeFraction(w, componentIdx);
|
|
}
|
|
auto& fs = intQuants.fluidState();
|
|
|
|
EvalWell pressure = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
EvalWell rs = extendEval(fs.Rs());
|
|
EvalWell rv = extendEval(fs.Rv());
|
|
std::vector<EvalWell> b_perfcells_dense(numComp, 0.0);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phase);
|
|
b_perfcells_dense[phase] = extendEval(fs.invB(ebosPhaseIdx));
|
|
}
|
|
if (has_solvent_) {
|
|
b_perfcells_dense[solventSaturationIdx] = extendEval(intQuants.solventInverseFormationVolumeFactor());
|
|
}
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
EvalWell well_pressure = bhp + cdp;
|
|
EvalWell drawdown = pressure - well_pressure;
|
|
|
|
// producing perforations
|
|
if ( drawdown.value() > 0 ) {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wells().type[w] == INJECTOR) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
const EvalWell cq_p = - Tw * (mob_perfcells_dense[componentIdx] * drawdown);
|
|
cq_s[componentIdx] = b_perfcells_dense[componentIdx] * cq_p;
|
|
}
|
|
|
|
if (active_[Oil] && active_[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
const EvalWell cq_sOil = cq_s[oilpos];
|
|
const EvalWell cq_sGas = cq_s[gaspos];
|
|
cq_s[gaspos] += rs * cq_sOil;
|
|
cq_s[oilpos] += rv * cq_sGas;
|
|
}
|
|
|
|
} else {
|
|
//Do nothing if crossflow is not allowed
|
|
if (!allow_cf && wells().type[w] == PRODUCER) {
|
|
return;
|
|
}
|
|
|
|
// Using total mobilities
|
|
EvalWell total_mob_dense = mob_perfcells_dense[0];
|
|
for (int componentIdx = 1; componentIdx < numComp; ++componentIdx) {
|
|
total_mob_dense += mob_perfcells_dense[componentIdx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - Tw * (total_mob_dense * drawdown);
|
|
|
|
// compute volume ratio between connection at standard conditions
|
|
EvalWell volumeRatio = 0.0;
|
|
if (active_[Water]) {
|
|
const int watpos = pu.phase_pos[Water];
|
|
volumeRatio += cmix_s[watpos] / b_perfcells_dense[watpos];
|
|
}
|
|
|
|
if (has_solvent_) {
|
|
volumeRatio += cmix_s[solventSaturationIdx] / b_perfcells_dense[solventSaturationIdx];
|
|
}
|
|
|
|
if (active_[Oil] && active_[Gas]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
const EvalWell d = 1.0 - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_THROW(Opm::NumericalProblem, "Zero d value obtained for well " << wells().name[w] << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilpos] - rv * cmix_s[gaspos]) / d;
|
|
//std::cout << "tmp_oil " <<tmp_oil << std::endl;
|
|
volumeRatio += tmp_oil / b_perfcells_dense[oilpos];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gaspos] - rs * cmix_s[oilpos]) / d;
|
|
//std::cout << "tmp_gas " <<tmp_gas << std::endl;
|
|
volumeRatio += tmp_gas / b_perfcells_dense[gaspos];
|
|
}
|
|
else {
|
|
if (active_[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
volumeRatio += cmix_s[oilpos] / b_perfcells_dense[oilpos];
|
|
}
|
|
if (active_[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
volumeRatio += cmix_s[gaspos] / b_perfcells_dense[gaspos];
|
|
}
|
|
}
|
|
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i/volumeRatio;
|
|
//std::cout << "volrat " << volumeRatio << " " << volrat_perf_[perf] << std::endl;
|
|
for (int componentIdx = 0; componentIdx < numComp; ++componentIdx) {
|
|
cq_s[componentIdx] = cmix_s[componentIdx] * cqt_is; // * b_perfcells_dense[phase];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
SimulatorReport
|
|
StandardWellsDense<TypeTag>::
|
|
solveWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state)
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
WellState well_state0 = well_state;
|
|
|
|
int it = 0;
|
|
bool converged;
|
|
do {
|
|
assembleWellEq(ebosSimulator, dt, well_state, true);
|
|
converged = getWellConvergence(ebosSimulator, it);
|
|
|
|
// checking whether the group targets are converged
|
|
if (wellCollection()->groupControlActive()) {
|
|
converged = converged && wellCollection()->groupTargetConverged(well_state.wellRates());
|
|
}
|
|
|
|
if (converged) {
|
|
break;
|
|
}
|
|
|
|
++it;
|
|
if( localWellsActive() )
|
|
{
|
|
BVector dx_well (nw);
|
|
invDuneD_.mv(resWell_, dx_well);
|
|
|
|
updateWellState(dx_well, well_state);
|
|
}
|
|
// updateWellControls uses communication
|
|
// Therefore the following is executed if there
|
|
// are active wells anywhere in the global domain.
|
|
if( wellsActive() )
|
|
{
|
|
updateWellControls(well_state);
|
|
setWellVariables(well_state);
|
|
}
|
|
} while (it < 15);
|
|
|
|
if (!converged) {
|
|
well_state = well_state0;
|
|
// also recover the old well controls
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells().ctrls[w];
|
|
well_controls_set_current(wc, well_state.currentControls()[w]);
|
|
}
|
|
}
|
|
|
|
SimulatorReport report;
|
|
report.converged = converged;
|
|
report.total_well_iterations = it;
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
printIf(const int c, const double x, const double y, const double eps, const std::string type) const
|
|
{
|
|
if (std::abs(x-y) > eps) {
|
|
std::cout << type << " " << c << ": "<<x << " " << y << std::endl;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>
|
|
StandardWellsDense<TypeTag>::
|
|
residual() const
|
|
{
|
|
if( ! wellsActive() )
|
|
{
|
|
return std::vector<double>();
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int numComp = numComponents();
|
|
std::vector<double> res(numEq*nw, 0.0);
|
|
for( int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
|
|
for (int wellIdx = 0; wellIdx < nw; ++wellIdx) {
|
|
int idx = wellIdx + nw*compIdx;
|
|
res[idx] = resWell_[ wellIdx ][ compIdx ];
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
getWellConvergence(Simulator& ebosSimulator,
|
|
const int iteration) const
|
|
{
|
|
typedef double Scalar;
|
|
typedef std::vector< Scalar > Vector;
|
|
|
|
const int np = numPhases();
|
|
const int numComp = numComponents();
|
|
|
|
const double tol_wells = param_.tolerance_wells_;
|
|
const double maxResidualAllowed = param_.max_residual_allowed_;
|
|
|
|
std::vector< Scalar > B_avg( numComp, Scalar() );
|
|
std::vector< Scalar > maxNormWell(numComp, Scalar() );
|
|
|
|
auto& grid = ebosSimulator.gridManager().grid();
|
|
const auto& gridView = grid.leafGridView();
|
|
ElementContext elemCtx(ebosSimulator);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0, Dune::Interior_Partition>();
|
|
|
|
for (auto elemIt = gridView.template begin</*codim=*/0, Dune::Interior_Partition>();
|
|
elemIt != elemEndIt; ++elemIt)
|
|
{
|
|
elemCtx.updatePrimaryStencil(*elemIt);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
for ( int phaseIdx = 0; phaseIdx < np; ++phaseIdx )
|
|
{
|
|
auto& B = B_avg[ phaseIdx ];
|
|
const int ebosPhaseIdx = flowPhaseToEbosPhaseIdx(phaseIdx);
|
|
|
|
B += 1 / fs.invB(ebosPhaseIdx).value();
|
|
}
|
|
if (has_solvent_) {
|
|
auto& B = B_avg[ solventSaturationIdx ];
|
|
B += 1 / intQuants.solventInverseFormationVolumeFactor().value();
|
|
}
|
|
}
|
|
|
|
// compute global average
|
|
grid.comm().sum(B_avg.data(), B_avg.size());
|
|
for(auto& bval: B_avg)
|
|
{
|
|
bval/=global_nc_;
|
|
}
|
|
|
|
auto res = residual();
|
|
const int nw = res.size() / numComp;
|
|
|
|
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
for ( int w = 0; w < nw; ++w ) {
|
|
maxNormWell[compIdx] = std::max(maxNormWell[compIdx], std::abs(res[nw*compIdx + w]));
|
|
}
|
|
}
|
|
|
|
grid.comm().max(maxNormWell.data(), maxNormWell.size());
|
|
|
|
Vector well_flux_residual(numComp);
|
|
bool converged_Well = true;
|
|
|
|
// Finish computation
|
|
for ( int compIdx = 0; compIdx < numComp; ++compIdx )
|
|
{
|
|
well_flux_residual[compIdx] = B_avg[compIdx] * maxNormWell[compIdx];
|
|
converged_Well = converged_Well && (well_flux_residual[compIdx] < tol_wells);
|
|
}
|
|
|
|
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const auto& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
|
|
if (std::isnan(well_flux_residual[phaseIdx])) {
|
|
OPM_THROW(Opm::NumericalProblem, "NaN residual for phase " << phaseName);
|
|
}
|
|
|
|
if (well_flux_residual[phaseIdx] > maxResidualAllowed) {
|
|
OPM_THROW(Opm::NumericalProblem, "Too large residual for phase " << phaseName);
|
|
}
|
|
}
|
|
|
|
if ( terminal_output_ )
|
|
{
|
|
// Only rank 0 does print to std::cout
|
|
if (iteration == 0) {
|
|
std::string msg;
|
|
msg = "Iter";
|
|
for (int phaseIdx = 0; phaseIdx < np; ++phaseIdx) {
|
|
const std::string& phaseName = FluidSystem::phaseName(flowPhaseToEbosPhaseIdx(phaseIdx));
|
|
msg += " W-FLUX(" + phaseName + ")";
|
|
}
|
|
OpmLog::note(msg);
|
|
}
|
|
|
|
std::ostringstream ss;
|
|
const std::streamsize oprec = ss.precision(3);
|
|
const std::ios::fmtflags oflags = ss.setf(std::ios::scientific);
|
|
ss << std::setw(4) << iteration;
|
|
for (int compIdx = 0; compIdx < numComp; ++compIdx) {
|
|
ss << std::setw(11) << well_flux_residual[compIdx];
|
|
}
|
|
ss.precision(oprec);
|
|
ss.flags(oflags);
|
|
OpmLog::note(ss.str());
|
|
}
|
|
return converged_Well;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& xw)
|
|
{
|
|
if( ! localWellsActive() ) return ;
|
|
|
|
// 1. Compute properties required by computeConnectionPressureDelta().
|
|
// Note that some of the complexity of this part is due to the function
|
|
// taking std::vector<double> arguments, and not Eigen objects.
|
|
std::vector<double> b_perf;
|
|
std::vector<double> rsmax_perf;
|
|
std::vector<double> rvmax_perf;
|
|
std::vector<double> surf_dens_perf;
|
|
computePropertiesForWellConnectionPressures(ebosSimulator, xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
computeWellConnectionDensitesPressures(xw, b_perf, rsmax_perf, rvmax_perf, surf_dens_perf, cell_depths_, gravity_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computePropertiesForWellConnectionPressures(const Simulator& ebosSimulator,
|
|
const WellState& xw,
|
|
std::vector<double>& b_perf,
|
|
std::vector<double>& rsmax_perf,
|
|
std::vector<double>& rvmax_perf,
|
|
std::vector<double>& surf_dens_perf) const
|
|
{
|
|
const int nperf = wells().well_connpos[wells().number_of_wells];
|
|
const int nw = wells().number_of_wells;
|
|
const int numComp = numComponents();
|
|
const PhaseUsage& pu = phase_usage_;
|
|
b_perf.resize(nperf*numComp);
|
|
surf_dens_perf.resize(nperf*numComp);
|
|
|
|
//rs and rv are only used if both oil and gas is present
|
|
if (pu.phase_used[BlackoilPhases::Vapour] && pu.phase_pos[BlackoilPhases::Liquid]) {
|
|
rsmax_perf.resize(nperf);
|
|
rvmax_perf.resize(nperf);
|
|
}
|
|
|
|
// Compute the average pressure in each well block
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
|
|
|
|
const int cell_idx = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p_above = perf == wells().well_connpos[w] ? xw.bhp()[w] : xw.perfPress()[perf - 1];
|
|
const double p_avg = (xw.perfPress()[perf] + p_above)/2;
|
|
const double temperature = fs.temperature(FluidSystem::oilPhaseIdx).value();
|
|
|
|
if (pu.phase_used[BlackoilPhases::Aqua]) {
|
|
b_perf[ pu.phase_pos[BlackoilPhases::Aqua] + perf * numComp] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
const int gaspos = pu.phase_pos[BlackoilPhases::Vapour] + perf * numComp;
|
|
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos_well]); //in order to handle negative rates in producers
|
|
rvmax_perf[perf] = FluidSystem::gasPvt().saturatedOilVaporizationFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
if (oilrate > 0) {
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
|
|
double rv = 0.0;
|
|
if (gasrate > 0) {
|
|
rv = oilrate / gasrate;
|
|
}
|
|
rv = std::min(rv, rvmax_perf[perf]);
|
|
|
|
b_perf[gaspos] = FluidSystem::gasPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rv);
|
|
}
|
|
else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
|
|
} else {
|
|
b_perf[gaspos] = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
if (pu.phase_used[BlackoilPhases::Liquid]) {
|
|
const int oilpos = pu.phase_pos[BlackoilPhases::Liquid] + perf * numComp;
|
|
const int oilpos_well = pu.phase_pos[BlackoilPhases::Liquid] + w * pu.num_phases;
|
|
if (pu.phase_used[BlackoilPhases::Vapour]) {
|
|
rsmax_perf[perf] = FluidSystem::oilPvt().saturatedGasDissolutionFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
const int gaspos_well = pu.phase_pos[BlackoilPhases::Vapour] + w * pu.num_phases;
|
|
const double gasrate = std::abs(xw.wellRates()[gaspos_well]) - xw.solventWellRate(w);
|
|
if (gasrate > 0) {
|
|
const double oilrate = std::abs(xw.wellRates()[oilpos_well]);
|
|
double rs = 0.0;
|
|
if (oilrate > 0) {
|
|
rs = gasrate / oilrate;
|
|
}
|
|
rs = std::min(rs, rsmax_perf[perf]);
|
|
b_perf[oilpos] = FluidSystem::oilPvt().inverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg, rs);
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
} else {
|
|
b_perf[oilpos] = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(fs.pvtRegionIndex(), temperature, p_avg);
|
|
}
|
|
}
|
|
|
|
// Surface density.
|
|
for (int p = 0; p < pu.num_phases; ++p) {
|
|
surf_dens_perf[numComp*perf + p] = FluidSystem::referenceDensity( flowPhaseToEbosPhaseIdx( p ), fs.pvtRegionIndex());
|
|
}
|
|
|
|
// We use cell values for solvent injector
|
|
if (has_solvent_) {
|
|
b_perf[numComp*perf + solventSaturationIdx] = intQuants.solventInverseFormationVolumeFactor().value();
|
|
surf_dens_perf[numComp*perf + solventSaturationIdx] = intQuants.solventRefDensity();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
updateWellState(const BVector& dwells,
|
|
WellState& well_state) const
|
|
{
|
|
if( !localWellsActive() ) return;
|
|
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
|
|
double dFLimit = dWellFractionMax();
|
|
double dBHPLimit = dbhpMaxRel();
|
|
std::vector<double> xvar_well_old = well_state.wellSolutions();
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
// update the second and third well variable (The flux fractions)
|
|
std::vector<double> F(np,0.0);
|
|
if (active_[ Water ]) {
|
|
const int sign2 = dwells[w][flowPhaseToEbosCompIdx(WFrac)] > 0 ? 1: -1;
|
|
const double dx2_limited = sign2 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(WFrac)]),dFLimit);
|
|
well_state.wellSolutions()[WFrac*nw + w] = xvar_well_old[WFrac*nw + w] - dx2_limited;
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
const int sign3 = dwells[w][flowPhaseToEbosCompIdx(GFrac)] > 0 ? 1: -1;
|
|
const double dx3_limited = sign3 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(GFrac)]),dFLimit);
|
|
well_state.wellSolutions()[GFrac*nw + w] = xvar_well_old[GFrac*nw + w] - dx3_limited;
|
|
}
|
|
|
|
if (has_solvent_) {
|
|
const int sign4 = dwells[w][flowPhaseToEbosCompIdx(SFrac)] > 0 ? 1: -1;
|
|
const double dx4_limited = sign4 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(SFrac)]),dFLimit);
|
|
well_state.wellSolutions()[SFrac*nw + w] = xvar_well_old[SFrac*nw + w] - dx4_limited;
|
|
}
|
|
|
|
assert(active_[ Oil ]);
|
|
F[Oil] = 1.0;
|
|
if (active_[ Water ]) {
|
|
F[Water] = well_state.wellSolutions()[WFrac*nw + w];
|
|
F[Oil] -= F[Water];
|
|
}
|
|
|
|
if (active_[ Gas ]) {
|
|
F[Gas] = well_state.wellSolutions()[GFrac*nw + w];
|
|
F[Oil] -= F[Gas];
|
|
}
|
|
|
|
double F_solvent = 0.0;
|
|
if (has_solvent_) {
|
|
F_solvent = well_state.wellSolutions()[SFrac*nw + w];
|
|
F[Oil] -= F_solvent;
|
|
}
|
|
|
|
if (active_[ Water ]) {
|
|
if (F[Water] < 0.0) {
|
|
if (active_[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Water]);
|
|
}
|
|
if (has_solvent_) {
|
|
F_solvent /= (1.0 - F[Water]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Water]);
|
|
F[Water] = 0.0;
|
|
}
|
|
}
|
|
if (active_[ Gas ]) {
|
|
if (F[Gas] < 0.0) {
|
|
if (active_[ Water ]) {
|
|
F[Water] /= (1.0 - F[Gas]);
|
|
}
|
|
if (has_solvent_) {
|
|
F_solvent /= (1.0 - F[Gas]);
|
|
}
|
|
F[Oil] /= (1.0 - F[Gas]);
|
|
F[Gas] = 0.0;
|
|
}
|
|
}
|
|
if (F[Oil] < 0.0) {
|
|
if (active_[ Water ]) {
|
|
F[Water] /= (1.0 - F[Oil]);
|
|
}
|
|
if (active_[ Gas ]) {
|
|
F[Gas] /= (1.0 - F[Oil]);
|
|
}
|
|
if (has_solvent_) {
|
|
F_solvent /= (1.0 - F[Oil]);
|
|
}
|
|
F[Oil] = 0.0;
|
|
}
|
|
|
|
if (active_[ Water ]) {
|
|
well_state.wellSolutions()[WFrac*nw + w] = F[Water];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
well_state.wellSolutions()[GFrac*nw + w] = F[Gas];
|
|
}
|
|
if(has_solvent_) {
|
|
well_state.wellSolutions()[SFrac*nw + w] = F_solvent;
|
|
}
|
|
|
|
// F_solvent is added to F_gas. This means that well_rate[Gas] also contains solvent.
|
|
// More testing is needed to make sure this is correct for well groups and THP.
|
|
if (has_solvent_){
|
|
F[Gas] += F_solvent;
|
|
}
|
|
|
|
// The interpretation of the first well variable depends on the well control
|
|
const WellControls* wc = wells().ctrls[w];
|
|
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
const int current = well_state.currentControls()[w];
|
|
const double target_rate = well_controls_iget_target(wc, current);
|
|
|
|
std::vector<double> g = {1,1,0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] > 0.) { // For injection wells, there only one non-zero distr value
|
|
F[p] /= distr[p];
|
|
} else {
|
|
F[p] = 0.;
|
|
}
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
F[p] /= g[p];
|
|
}
|
|
}
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP: // The BHP and THP both uses the total rate as first well variable.
|
|
case BHP:
|
|
{
|
|
well_state.wellSolutions()[nw*XvarWell + w] = xvar_well_old[nw*XvarWell + w] - dwells[w][flowPhaseToEbosCompIdx(XvarWell)];
|
|
|
|
switch (wells().type[w]) {
|
|
case INJECTOR:
|
|
for (int p = 0; p < np; ++p) {
|
|
const double comp_frac = wells().comp_frac[np*w + p];
|
|
well_state.wellRates()[w*np + p] = comp_frac * well_state.wellSolutions()[nw*XvarWell + w];
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[w*np + p] = well_state.wellSolutions()[nw*XvarWell + w] * F[p];
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (well_controls_iget_type(wc, current) == THP) {
|
|
|
|
// Calculate bhp from thp control and well rates
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wells().type[w];
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[w];
|
|
const double rho = well_perforation_densities_[perf];
|
|
|
|
if (well_type == INJECTOR) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
well_state.bhp()[w] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
well_state.bhp()[w] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case SURFACE_RATE: // Both rate controls use bhp as first well variable
|
|
case RESERVOIR_RATE:
|
|
{
|
|
const int sign1 = dwells[w][flowPhaseToEbosCompIdx(XvarWell)] > 0 ? 1: -1;
|
|
const double dx1_limited = sign1 * std::min(std::abs(dwells[w][flowPhaseToEbosCompIdx(XvarWell)]),std::abs(xvar_well_old[nw*XvarWell + w])*dBHPLimit);
|
|
well_state.wellSolutions()[nw*XvarWell + w] = std::max(xvar_well_old[nw*XvarWell + w] - dx1_limited,1e5);
|
|
well_state.bhp()[w] = well_state.wellSolutions()[nw*XvarWell + w];
|
|
|
|
if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
|
|
if (wells().type[w]==PRODUCER) {
|
|
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
|
|
double F_target = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
F_target += distr[p] * F[p];
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np*w + p] = F[p] * target_rate / F_target;
|
|
}
|
|
} else {
|
|
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[w*np + p] = wells().comp_frac[np*w + p] * target_rate;
|
|
}
|
|
}
|
|
} else { // RESERVOIR_RATE
|
|
for (int p = 0; p < np; ++p) {
|
|
well_state.wellRates()[np*w + p] = F[p] * target_rate;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} // end of switch (well_controls_iget_type(wc, current))
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
|
|
|
|
// for the wells having a THP constaint, we should update their thp value
|
|
// If it is under THP control, it will be set to be the target value. Otherwise,
|
|
// the thp value will be calculated based on the bhp value, assuming the bhp value is correctly calculated.
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
const int nwc = well_controls_get_num(wc);
|
|
// Looping over all controls until we find a THP constraint
|
|
int ctrl_index = 0;
|
|
for ( ; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(wc, ctrl_index) == THP) {
|
|
// the current control
|
|
const int current = well_state.currentControls()[w];
|
|
// If under THP control at the moment
|
|
if (current == ctrl_index) {
|
|
const double thp_target = well_controls_iget_target(wc, current);
|
|
well_state.thp()[w] = thp_target;
|
|
} else { // otherwise we calculate the thp from the bhp value
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = well_state.wellRates()[w*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = well_state.wellRates()[w*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = well_state.wellRates()[w*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const double alq = well_controls_iget_alq(wc, ctrl_index);
|
|
const int table_id = well_controls_iget_vfp(wc, ctrl_index);
|
|
|
|
const WellType& well_type = wells().type[w];
|
|
const int perf = wells().well_connpos[w]; //first perforation.
|
|
if (well_type == INJECTOR) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getInj()->getTable(table_id)->getDatumDepth(),
|
|
wellPerforationDensities()[perf], gravity_);
|
|
|
|
const double bhp = well_state.bhp()[w];
|
|
well_state.thp()[w] = vfp_properties_->getInj()->thp(table_id, aqua, liquid, vapour, bhp + dp);
|
|
} else if (well_type == PRODUCER) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), w, vfp_properties_->getProd()->getTable(table_id)->getDatumDepth(),
|
|
wellPerforationDensities()[perf], gravity_);
|
|
|
|
const double bhp = well_state.bhp()[w];
|
|
well_state.thp()[w] = vfp_properties_->getProd()->thp(table_id, aqua, liquid, vapour, bhp + dp, alq);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected INJECTOR or PRODUCER well");
|
|
}
|
|
}
|
|
|
|
// the THP control is found, we leave the loop now
|
|
break;
|
|
}
|
|
} // end of for loop for seaching THP constraints
|
|
|
|
// no THP constraint found
|
|
if (ctrl_index == nwc) { // not finding a THP contstraints
|
|
well_state.thp()[w] = 0.0;
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
updateWellControls(WellState& xw) const
|
|
{
|
|
// Even if there no wells active locally, we cannot
|
|
// return as the Destructor of the WellSwitchingLogger
|
|
// uses global communication. For no well active globally
|
|
// we simply return.
|
|
if( !wellsActive() ) return ;
|
|
|
|
const int np = wells().number_of_phases;
|
|
const int nw = wells().number_of_wells;
|
|
|
|
// keeping a copy of the current controls, to see whether control changes later.
|
|
std::vector<int> old_control_index(nw, 0);
|
|
for (int w = 0; w < nw; ++w) {
|
|
old_control_index[w] = xw.currentControls()[w];
|
|
}
|
|
|
|
// Find, for each well, if any constraints are broken. If so,
|
|
// switch control to first broken constraint.
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells().ctrls[w];
|
|
// The current control in the well state overrides
|
|
// the current control set in the Wells struct, which
|
|
// is instead treated as a default.
|
|
int current = xw.currentControls()[w];
|
|
// Loop over all controls except the current one, and also
|
|
// skip any RESERVOIR_RATE controls, since we cannot
|
|
// handle those.
|
|
const int nwc = well_controls_get_num(wc);
|
|
int ctrl_index = 0;
|
|
for (; ctrl_index < nwc; ++ctrl_index) {
|
|
if (ctrl_index == current) {
|
|
// This is the currently used control, so it is
|
|
// used as an equation. So this is not used as an
|
|
// inequality constraint, and therefore skipped.
|
|
continue;
|
|
}
|
|
if (wellhelpers::constraintBroken(
|
|
xw.bhp(), xw.thp(), xw.wellRates(),
|
|
w, np, wells().type[w], wc, ctrl_index)) {
|
|
// ctrl_index will be the index of the broken constraint after the loop.
|
|
break;
|
|
}
|
|
}
|
|
if (ctrl_index != nwc) {
|
|
// Constraint number ctrl_index was broken, switch to it.
|
|
xw.currentControls()[w] = ctrl_index;
|
|
current = xw.currentControls()[w];
|
|
well_controls_set_current( wc, current);
|
|
}
|
|
|
|
// update whether well is under group control
|
|
if (wellCollection()->groupControlActive()) {
|
|
// get well node in the well collection
|
|
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
|
|
|
|
// update whehter the well is under group control or individual control
|
|
if (well_node.groupControlIndex() >= 0 && current == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// the new well control indices after all the related updates,
|
|
std::vector<int> updated_control_index(nw, 0);
|
|
for (int w = 0; w < nw; ++w) {
|
|
updated_control_index[w] = xw.currentControls()[w];
|
|
}
|
|
|
|
// checking whether control changed
|
|
wellhelpers::WellSwitchingLogger logger;
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
if (updated_control_index[w] != old_control_index[w]) {
|
|
logger.wellSwitched(wells().name[w],
|
|
well_controls_iget_type(wc, old_control_index[w]),
|
|
well_controls_iget_type(wc, updated_control_index[w]));
|
|
}
|
|
|
|
if (updated_control_index[w] != old_control_index[w] || well_collection_->groupControlActive()) {
|
|
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
|
|
}
|
|
}
|
|
|
|
// upate the well targets following group controls
|
|
// it will not change the control mode, only update the targets
|
|
if (wellCollection()->groupControlActive()) {
|
|
applyVREPGroupControl(xw);
|
|
wellCollection()->updateWellTargets(xw.wellRates());
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells().ctrls[w];
|
|
updateWellStateWithTarget(wc, updated_control_index[w], w, xw);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
updateListEconLimited(const Schedule& schedule,
|
|
const int current_step,
|
|
const Wells* wells_struct,
|
|
const WellState& well_state,
|
|
DynamicListEconLimited& list_econ_limited) const
|
|
{
|
|
// With no wells (on process) wells_struct is a null pointer
|
|
const int nw = (wells_struct)? wells_struct->number_of_wells : 0;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
// flag to check if the mim oil/gas rate limit is violated
|
|
bool rate_limit_violated = false;
|
|
const std::string& well_name = wells_struct->name[w];
|
|
const Well* well_ecl = schedule.getWell(well_name);
|
|
const WellEconProductionLimits& econ_production_limits = well_ecl->getEconProductionLimits(current_step);
|
|
|
|
// economic limits only apply for production wells.
|
|
if (wells_struct->type[w] != PRODUCER) {
|
|
continue;
|
|
}
|
|
|
|
// if no limit is effective here, then continue to the next well
|
|
if ( !econ_production_limits.onAnyEffectiveLimit() ) {
|
|
continue;
|
|
}
|
|
// for the moment, we only handle rate limits, not handling potential limits
|
|
// the potential limits should not be difficult to add
|
|
const WellEcon::QuantityLimitEnum& quantity_limit = econ_production_limits.quantityLimit();
|
|
if (quantity_limit == WellEcon::POTN) {
|
|
const std::string msg = std::string("POTN limit for well ") + well_name + std::string(" is not supported for the moment. \n")
|
|
+ std::string("All the limits will be evaluated based on RATE. ");
|
|
OpmLog::warning("NOT_SUPPORTING_POTN", msg);
|
|
}
|
|
|
|
const WellMapType& well_map = well_state.wellMap();
|
|
const typename WellMapType::const_iterator i_well = well_map.find(well_name);
|
|
assert(i_well != well_map.end()); // should always be found?
|
|
const WellMapEntryType& map_entry = i_well->second;
|
|
const int well_number = map_entry[0];
|
|
|
|
if (econ_production_limits.onAnyRateLimit()) {
|
|
rate_limit_violated = checkRateEconLimits(econ_production_limits, well_state, well_number);
|
|
}
|
|
|
|
if (rate_limit_violated) {
|
|
if (econ_production_limits.endRun()) {
|
|
const std::string warning_message = std::string("ending run after well closed due to economic limits is not supported yet \n")
|
|
+ std::string("the program will keep running after ") + well_name + std::string(" is closed");
|
|
OpmLog::warning("NOT_SUPPORTING_ENDRUN", warning_message);
|
|
}
|
|
|
|
if (econ_production_limits.validFollowonWell()) {
|
|
OpmLog::warning("NOT_SUPPORTING_FOLLOWONWELL", "opening following on well after well closed is not supported yet");
|
|
}
|
|
|
|
if (well_ecl->getAutomaticShutIn()) {
|
|
list_econ_limited.addShutWell(well_name);
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be shut in due to economic limit");
|
|
OpmLog::info(msg);
|
|
} else {
|
|
list_econ_limited.addStoppedWell(well_name);
|
|
const std::string msg = std::string("well ") + well_name + std::string(" will be stopped due to economic limit");
|
|
OpmLog::info(msg);
|
|
}
|
|
// the well is closed, not need to check other limits
|
|
continue;
|
|
}
|
|
|
|
// checking for ratio related limits, mostly all kinds of ratio.
|
|
bool ratio_limits_violated = false;
|
|
RatioCheckTuple ratio_check_return;
|
|
|
|
if (econ_production_limits.onAnyRatioLimit()) {
|
|
ratio_check_return = checkRatioEconLimits(econ_production_limits, well_state, map_entry);
|
|
ratio_limits_violated = std::get<0>(ratio_check_return);
|
|
}
|
|
|
|
if (ratio_limits_violated) {
|
|
const bool last_connection = std::get<1>(ratio_check_return);
|
|
const int worst_offending_connection = std::get<2>(ratio_check_return);
|
|
|
|
const int perf_start = map_entry[1];
|
|
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < map_entry[2]));
|
|
|
|
const int cell_worst_offending_connection = wells_struct->well_cells[perf_start + worst_offending_connection];
|
|
list_econ_limited.addClosedConnectionsForWell(well_name, cell_worst_offending_connection);
|
|
const std::string msg = std::string("Connection ") + std::to_string(worst_offending_connection) + std::string(" for well ")
|
|
+ well_name + std::string(" will be closed due to economic limit");
|
|
OpmLog::info(msg);
|
|
|
|
if (last_connection) {
|
|
list_econ_limited.addShutWell(well_name);
|
|
const std::string msg2 = well_name + std::string(" will be shut due to the last connection closed");
|
|
OpmLog::info(msg2);
|
|
}
|
|
}
|
|
|
|
} // for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellConnectionDensitesPressures(const WellState& xw,
|
|
const std::vector<double>& b_perf,
|
|
const std::vector<double>& rsmax_perf,
|
|
const std::vector<double>& rvmax_perf,
|
|
const std::vector<double>& surf_dens_perf,
|
|
const std::vector<double>& depth_perf,
|
|
const double grav)
|
|
{
|
|
// Compute densities
|
|
const int nperf = depth_perf.size();
|
|
const int numComponent = b_perf.size() / nperf;
|
|
const int np = wells().number_of_phases;
|
|
std::vector<double> perfRates(b_perf.size(),0.0);
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
perfRates[perf*numComponent + phase] = xw.perfPhaseRates()[perf*np + phase];
|
|
}
|
|
if(has_solvent_) {
|
|
perfRates[perf*numComponent + solventSaturationIdx] = xw.perfRateSolvent()[perf];
|
|
}
|
|
}
|
|
well_perforation_densities_ =
|
|
WellDensitySegmented::computeConnectionDensities(
|
|
wells(), phase_usage_, perfRates,
|
|
b_perf, rsmax_perf, rvmax_perf, surf_dens_perf);
|
|
|
|
// Compute pressure deltas
|
|
well_perforation_pressure_diffs_ =
|
|
WellDensitySegmented::computeConnectionPressureDelta(
|
|
wells(), depth_perf, well_perforation_densities_, grav);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellPotentials(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials) const
|
|
{
|
|
|
|
// number of wells and phases
|
|
const int nw = wells().number_of_wells;
|
|
const int np = wells().number_of_phases;
|
|
|
|
well_potentials.resize(nw * np, 0.0);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
|
|
// get the bhp value based on the bhp constraints
|
|
const double bhp = mostStrictBhpFromBhpLimits(w);
|
|
|
|
// does the well have a THP related constraint?
|
|
const bool has_thp_control = wellHasTHPConstraints(w);
|
|
|
|
std::vector<double> potentials(np);
|
|
|
|
if ( !has_thp_control ) {
|
|
|
|
assert(std::abs(bhp) != std::numeric_limits<double>::max());
|
|
|
|
computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials);
|
|
|
|
} else { // the well has a THP related constraint
|
|
// checking whether a well is newly added, it only happens at the beginning of the report step
|
|
if ( !well_state.isNewWell(w) ) {
|
|
for (int p = 0; p < np; ++p) {
|
|
// This is dangerous for new added well
|
|
// since we are not handling the initialization correctly for now
|
|
potentials[p] = well_state.wellRates()[w * np + p];
|
|
}
|
|
} else {
|
|
// We need to generate a reasonable rates to start the iteration process
|
|
computeWellRatesWithBhp(ebosSimulator, bhp, w, potentials);
|
|
for (double& value : potentials) {
|
|
// make the value a little safer in case the BHP limits are default ones
|
|
// TODO: a better way should be a better rescaling based on the investigation of the VFP table.
|
|
const double rate_safety_scaling_factor = 0.00001;
|
|
value *= rate_safety_scaling_factor;
|
|
}
|
|
}
|
|
|
|
potentials = computeWellPotentialWithTHP(ebosSimulator, w, bhp, potentials);
|
|
}
|
|
|
|
// putting the sucessfully calculated potentials to the well_potentials
|
|
for (int p = 0; p < np; ++p) {
|
|
well_potentials[w * np + p] = std::abs(potentials[p]);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
prepareTimeStep(const Simulator& ebos_simulator,
|
|
WellState& well_state)
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
for (int w = 0; w < nw; ++w) {
|
|
// after restarting, the well_controls can be modified while
|
|
// the well_state still uses the old control index
|
|
// we need to synchronize these two.
|
|
resetWellControlFromState(well_state);
|
|
|
|
if (wellCollection()->groupControlActive()) {
|
|
WellControls* wc = wells().ctrls[w];
|
|
WellNode& well_node = well_collection_->findWellNode(std::string(wells().name[w]));
|
|
|
|
// handling the situation that wells do not have a valid control
|
|
// it happens the well specified with GRUP and restarting due to non-convergencing
|
|
// putting the well under group control for this situation
|
|
int ctrl_index = well_controls_get_current(wc);
|
|
|
|
const int group_control_index = well_node.groupControlIndex();
|
|
if (group_control_index >= 0 && ctrl_index < 0) {
|
|
// put well under group control
|
|
well_controls_set_current(wc, group_control_index);
|
|
well_state.currentControls()[w] = group_control_index;
|
|
}
|
|
|
|
// Final step, update whehter the well is under group control or individual control
|
|
// updated ctrl_index from the well control
|
|
ctrl_index = well_controls_get_current(wc);
|
|
if (well_node.groupControlIndex() >= 0 && ctrl_index == well_node.groupControlIndex()) {
|
|
// under group control
|
|
well_node.setIndividualControl(false);
|
|
} else {
|
|
// individual control
|
|
well_node.setIndividualControl(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (well_collection_->groupControlActive()) {
|
|
if (well_collection_->requireWellPotentials()) {
|
|
|
|
// calculate the well potentials
|
|
setWellVariables(well_state);
|
|
computeWellConnectionPressures(ebos_simulator, well_state);
|
|
|
|
// To store well potentials for each well
|
|
std::vector<double> well_potentials;
|
|
computeWellPotentials(ebos_simulator, well_state, well_potentials);
|
|
|
|
// update/setup guide rates for each well based on the well_potentials
|
|
well_collection_->setGuideRatesWithPotentials(wellsPointer(), phase_usage_, well_potentials);
|
|
}
|
|
|
|
applyVREPGroupControl(well_state);
|
|
|
|
if (!wellCollection()->groupControlApplied()) {
|
|
wellCollection()->applyGroupControls();
|
|
} else {
|
|
wellCollection()->updateWellTargets(well_state.wellRates());
|
|
}
|
|
}
|
|
|
|
// since the controls are all updated, we should update well_state accordingly
|
|
for (int w = 0; w < nw; ++w) {
|
|
WellControls* wc = wells().ctrls[w];
|
|
const int control = well_controls_get_current(wc);
|
|
well_state.currentControls()[w] = control;
|
|
updateWellStateWithTarget(wc, control, w, well_state);
|
|
|
|
// The wells are not considered to be newly added
|
|
// for next time step
|
|
if (well_state.isNewWell(w) ) {
|
|
well_state.setNewWell(w, false);
|
|
}
|
|
} // end of for (int w = 0; w < nw; ++w)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellCollection*
|
|
StandardWellsDense<TypeTag>::
|
|
wellCollection() const
|
|
{
|
|
return well_collection_;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
const std::vector<double>&
|
|
StandardWellsDense<TypeTag>::
|
|
wellPerfEfficiencyFactors() const
|
|
{
|
|
return well_perforation_efficiency_factors_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
calculateEfficiencyFactors()
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const std::string well_name = wells().name[w];
|
|
const WellNode& well_node = wellCollection()->findWellNode(well_name);
|
|
|
|
const double well_efficiency_factor = well_node.getAccumulativeEfficiencyFactor();
|
|
|
|
// assign the efficiency factor to each perforation related.
|
|
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w + 1]; ++perf) {
|
|
well_perforation_efficiency_factors_[perf] = well_efficiency_factor;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellVoidageRates(const WellState& well_state,
|
|
std::vector<double>& well_voidage_rates,
|
|
std::vector<double>& voidage_conversion_coeffs) const
|
|
{
|
|
if ( !localWellsActive() ) {
|
|
return;
|
|
}
|
|
// TODO: for now, we store the voidage rates for all the production wells.
|
|
// For injection wells, the rates are stored as zero.
|
|
// We only store the conversion coefficients for all the injection wells.
|
|
// Later, more delicate model will be implemented here.
|
|
// And for the moment, group control can only work for serial running.
|
|
const int nw = well_state.numWells();
|
|
const int np = well_state.numPhases();
|
|
|
|
// we calculate the voidage rate for each well, that means the sum of all the phases.
|
|
well_voidage_rates.resize(nw, 0);
|
|
// store the conversion coefficients, while only for the use of injection wells.
|
|
voidage_conversion_coeffs.resize(nw * np, 1.0);
|
|
|
|
std::vector<double> well_rates(np, 0.0);
|
|
std::vector<double> convert_coeff(np, 1.0);
|
|
|
|
for (int w = 0; w < nw; ++w) {
|
|
const bool is_producer = wells().type[w] == PRODUCER;
|
|
|
|
// not sure necessary to change all the value to be positive
|
|
if (is_producer) {
|
|
std::transform(well_state.wellRates().begin() + np * w,
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin(), std::negate<double>());
|
|
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
|
|
rate_converter_->calcCoeff(well_rates, fipreg, convert_coeff);
|
|
well_voidage_rates[w] = std::inner_product(well_rates.begin(), well_rates.end(),
|
|
convert_coeff.begin(), 0.0);
|
|
} else {
|
|
// TODO: Not sure whether will encounter situation with all zero rates
|
|
// and whether it will cause problem here.
|
|
std::copy(well_state.wellRates().begin() + np * w,
|
|
well_state.wellRates().begin() + np * (w + 1),
|
|
well_rates.begin());
|
|
// the average hydrocarbon conditions of the whole field will be used
|
|
const int fipreg = 0; // Not considering FIP for the moment.
|
|
rate_converter_->calcCoeff(well_rates, fipreg, convert_coeff);
|
|
std::copy(convert_coeff.begin(), convert_coeff.end(),
|
|
voidage_conversion_coeffs.begin() + np * w);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
applyVREPGroupControl(WellState& well_state) const
|
|
{
|
|
if ( wellCollection()->havingVREPGroups() ) {
|
|
std::vector<double> well_voidage_rates;
|
|
std::vector<double> voidage_conversion_coeffs;
|
|
computeWellVoidageRates(well_state, well_voidage_rates, voidage_conversion_coeffs);
|
|
wellCollection()->applyVREPGroupControls(well_voidage_rates, voidage_conversion_coeffs);
|
|
|
|
// for the wells under group control, update the control index for the well_state and well_controls
|
|
for (const WellNode* well_node : wellCollection()->getLeafNodes()) {
|
|
if (well_node->isInjector() && !well_node->individualControl()) {
|
|
const int well_index = well_node->selfIndex();
|
|
well_state.currentControls()[well_index] = well_node->groupControlIndex();
|
|
|
|
WellControls* wc = wells().ctrls[well_index];
|
|
well_controls_set_current(wc, well_node->groupControlIndex());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
getBhp(const int wellIdx) const {
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
if (well_controls_get_current_type(wc) == BHP) {
|
|
EvalWell bhp = 0.0;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
bhp.setValue(target_rate);
|
|
return bhp;
|
|
} else if (well_controls_get_current_type(wc) == THP) {
|
|
const int control = well_controls_get_current(wc);
|
|
const double thp = well_controls_get_current_target(wc);
|
|
const double alq = well_controls_iget_alq(wc, control);
|
|
const int table_id = well_controls_iget_vfp(wc, control);
|
|
EvalWell aqua = 0.0;
|
|
EvalWell liquid = 0.0;
|
|
EvalWell vapour = 0.0;
|
|
EvalWell bhp = 0.0;
|
|
double vfp_ref_depth = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = getQs(wellIdx, pu.phase_pos[ Water]);
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = getQs(wellIdx, pu.phase_pos[ Oil ]);
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = getQs(wellIdx, pu.phase_pos[ Gas ]);
|
|
}
|
|
if (wells().type[wellIdx] == INJECTOR) {
|
|
bhp = vfp_properties_->getInj()->bhp(table_id, aqua, liquid, vapour, thp);
|
|
vfp_ref_depth = vfp_properties_->getInj()->getTable(table_id)->getDatumDepth();
|
|
} else {
|
|
bhp = vfp_properties_->getProd()->bhp(table_id, aqua, liquid, vapour, thp, alq);
|
|
vfp_ref_depth = vfp_properties_->getProd()->getTable(table_id)->getDatumDepth();
|
|
}
|
|
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[wellIdx];
|
|
const double rho = well_perforation_densities_[perf];
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(wells(), wellIdx, vfp_ref_depth, rho, gravity_);
|
|
bhp -= dp;
|
|
return bhp;
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
return wellVariables_[nw*XvarWell + wellIdx];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
getQs(const int wellIdx, const int compIdx) const
|
|
{
|
|
EvalWell qs = 0.0;
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
const int np = wells().number_of_phases;
|
|
assert(compIdx < numComponents());
|
|
const int nw = wells().number_of_wells;
|
|
const auto pu = phase_usage_;
|
|
const double target_rate = well_controls_get_current_target(wc);
|
|
|
|
// TODO: the formulation for the injectors decides it only work with single phase
|
|
// surface rate injection control. Improvement will be required.
|
|
if (wells().type[wellIdx] == INJECTOR) {
|
|
if (has_solvent_ ) {
|
|
double comp_frac = 0.0;
|
|
if (has_solvent_ && compIdx == solventSaturationIdx) { // solvent
|
|
comp_frac = wells().comp_frac[np*wellIdx + pu.phase_pos[ Gas ]] * wsolvent(wellIdx);
|
|
} else if (compIdx == pu.phase_pos[ Gas ]) {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx] * (1.0 - wsolvent(wellIdx));
|
|
} else {
|
|
comp_frac = wells().comp_frac[np*wellIdx + compIdx];
|
|
}
|
|
if (comp_frac == 0.0) {
|
|
return qs; //zero
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return comp_frac * wellVariables_[nw*XvarWell + wellIdx];
|
|
}
|
|
|
|
qs.setValue(comp_frac * target_rate);
|
|
return qs;
|
|
}
|
|
const double comp_frac = wells().comp_frac[np*wellIdx + compIdx];
|
|
if (comp_frac == 0.0) {
|
|
return qs;
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP) {
|
|
return wellVariables_[nw*XvarWell + wellIdx];
|
|
}
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// Producers
|
|
if (well_controls_get_current_type(wc) == BHP || well_controls_get_current_type(wc) == THP ) {
|
|
return wellVariables_[nw*XvarWell + wellIdx] * wellVolumeFractionScaled(wellIdx, compIdx);
|
|
}
|
|
|
|
if (well_controls_get_current_type(wc) == SURFACE_RATE) {
|
|
// checking how many phases are included in the rate control
|
|
// to decide wheter it is a single phase rate control or not
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
int num_phases_under_rate_control = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
num_phases_under_rate_control += 1;
|
|
}
|
|
}
|
|
|
|
// there should be at least one phase involved
|
|
assert(num_phases_under_rate_control > 0);
|
|
|
|
// when it is a single phase rate limit
|
|
if (num_phases_under_rate_control == 1) {
|
|
|
|
// looking for the phase under control
|
|
int phase_under_control = -1;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
phase_under_control = phase;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(phase_under_control >= 0);
|
|
|
|
EvalWell wellVolumeFractionScaledPhaseUnderControl = wellVolumeFractionScaled(wellIdx, phase_under_control);
|
|
if (has_solvent_ && phase_under_control == Gas) {
|
|
// for GRAT controlled wells solvent is included in the target
|
|
wellVolumeFractionScaledPhaseUnderControl += wellVolumeFractionScaled(wellIdx, solventSaturationIdx);
|
|
}
|
|
|
|
if (compIdx == phase_under_control) {
|
|
if (has_solvent_ && phase_under_control == Gas) {
|
|
qs.setValue(target_rate * wellVolumeFractionScaled(wellIdx, Gas).value() / wellVolumeFractionScaledPhaseUnderControl.value() );
|
|
return qs;
|
|
}
|
|
qs.setValue(target_rate);
|
|
return qs;
|
|
}
|
|
|
|
// TODO: not sure why the single phase under control will have near zero fraction
|
|
const double eps = 1e-6;
|
|
if (wellVolumeFractionScaledPhaseUnderControl < eps) {
|
|
return qs;
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(wellIdx, compIdx) / wellVolumeFractionScaledPhaseUnderControl);
|
|
}
|
|
|
|
// when it is a combined two phase rate limit, such like LRAT
|
|
// we neec to calculate the rate for the certain phase
|
|
if (num_phases_under_rate_control == 2) {
|
|
EvalWell combined_volume_fraction = 0.;
|
|
for (int p = 0; p < np; ++p) {
|
|
if (distr[p] == 1.0) {
|
|
combined_volume_fraction += wellVolumeFractionScaled(wellIdx, p);
|
|
}
|
|
}
|
|
return (target_rate * wellVolumeFractionScaled(wellIdx, compIdx) / combined_volume_fraction);
|
|
}
|
|
|
|
// TODO: three phase surface rate control is not tested yet
|
|
if (num_phases_under_rate_control == 3) {
|
|
return target_rate * wellSurfaceVolumeFraction(wellIdx, compIdx);
|
|
}
|
|
} else if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
// ReservoirRate
|
|
return target_rate * wellVolumeFractionScaled(wellIdx, compIdx);
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Unknown control type for well " << wells().name[wellIdx]);
|
|
}
|
|
|
|
// avoid warning of condition reaches end of non-void function
|
|
return qs;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
wellVolumeFraction(const int wellIdx, const int compIdx) const
|
|
{
|
|
const int nw = wells().number_of_wells;
|
|
if (compIdx == Water) {
|
|
return wellVariables_[WFrac * nw + wellIdx];
|
|
}
|
|
|
|
if (compIdx == Gas) {
|
|
return wellVariables_[GFrac * nw + wellIdx];
|
|
}
|
|
|
|
if (has_solvent_ && compIdx == solventSaturationIdx) {
|
|
return wellVariables_[SFrac * nw + wellIdx];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell well_fraction = 1.0;
|
|
if (active_[Water]) {
|
|
well_fraction -= wellVariables_[WFrac * nw + wellIdx];
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
well_fraction -= wellVariables_[GFrac * nw + wellIdx];
|
|
}
|
|
if (has_solvent_) {
|
|
well_fraction -= wellVariables_[SFrac * nw + wellIdx];
|
|
}
|
|
return well_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
wellVolumeFractionScaled(const int wellIdx, const int compIdx) const
|
|
{
|
|
const WellControls* wc = wells().ctrls[wellIdx];
|
|
if (well_controls_get_current_type(wc) == RESERVOIR_RATE) {
|
|
|
|
if (has_solvent_ && compIdx == solventSaturationIdx) {
|
|
return wellVolumeFraction(wellIdx, compIdx);
|
|
}
|
|
const double* distr = well_controls_get_current_distr(wc);
|
|
assert(compIdx < 3);
|
|
if (distr[compIdx] > 0.) {
|
|
return wellVolumeFraction(wellIdx, compIdx) / distr[compIdx];
|
|
} else {
|
|
// TODO: not sure why return EvalWell(0.) causing problem here
|
|
// Probably due to the wrong Jacobians.
|
|
return wellVolumeFraction(wellIdx, compIdx);
|
|
}
|
|
}
|
|
std::vector<double> g = {1,1,0.01,0.01};
|
|
return (wellVolumeFraction(wellIdx, compIdx) / g[compIdx]);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::EvalWell
|
|
StandardWellsDense<TypeTag>::
|
|
wellSurfaceVolumeFraction(const int well_index, const int compIdx) const
|
|
{
|
|
EvalWell sum_volume_fraction_scaled = 0.;
|
|
const int numComp = numComponents();
|
|
for (int idx = 0; idx < numComp; ++idx) {
|
|
sum_volume_fraction_scaled += wellVolumeFractionScaled(well_index, idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return wellVolumeFractionScaled(well_index, compIdx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const int well_number) const
|
|
{
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
const int np = well_state.numPhases();
|
|
|
|
if (econ_production_limits.onMinOilRate()) {
|
|
assert(active_[Oil]);
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double min_oil_rate = econ_production_limits.minOilRate();
|
|
if (std::abs(oil_rate) < min_oil_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinGasRate() ) {
|
|
assert(active_[Gas]);
|
|
const double gas_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Gas ] ];
|
|
const double min_gas_rate = econ_production_limits.minGasRate();
|
|
if (std::abs(gas_rate) < min_gas_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinLiquidRate() ) {
|
|
assert(active_[Oil]);
|
|
assert(active_[Water]);
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
const double min_liquid_rate = econ_production_limits.minLiquidRate();
|
|
if (std::abs(liquid_rate) < min_liquid_rate) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMinReservoirFluidRate()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MIN_RESERVOIR_FLUID_RATE", "Minimum reservoir fluid production rate limit is not supported yet");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::RatioCheckTuple
|
|
StandardWellsDense<TypeTag>::
|
|
checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const WellMapEntryType& map_entry) const
|
|
{
|
|
// TODO: not sure how to define the worst-offending connection when more than one
|
|
// ratio related limit is violated.
|
|
// The defintion used here is that we define the violation extent based on the
|
|
// ratio between the value and the corresponding limit.
|
|
// For each violated limit, we decide the worst-offending connection separately.
|
|
// Among the worst-offending connections, we use the one has the biggest violation
|
|
// extent.
|
|
|
|
bool any_limit_violated = false;
|
|
bool last_connection = false;
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
double violation_extent = -1.0;
|
|
|
|
if (econ_production_limits.onMaxWaterCut()) {
|
|
const RatioCheckTuple water_cut_return = checkMaxWaterCutLimit(econ_production_limits, well_state, map_entry);
|
|
bool water_cut_violated = std::get<0>(water_cut_return);
|
|
if (water_cut_violated) {
|
|
any_limit_violated = true;
|
|
const double violation_extent_water_cut = std::get<3>(water_cut_return);
|
|
if (violation_extent_water_cut > violation_extent) {
|
|
violation_extent = violation_extent_water_cut;
|
|
worst_offending_connection = std::get<2>(water_cut_return);
|
|
last_connection = std::get<1>(water_cut_return);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasOilRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GOR", "the support for max Gas-Oil ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxWaterGasRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_WGR", "the support for max Water-Gas ratio is not implemented yet!");
|
|
}
|
|
|
|
if (econ_production_limits.onMaxGasLiquidRatio()) {
|
|
OpmLog::warning("NOT_SUPPORTING_MAX_GLR", "the support for max Gas-Liquid ratio is not implemented yet!");
|
|
}
|
|
|
|
if (any_limit_violated) {
|
|
assert(worst_offending_connection >=0);
|
|
assert(violation_extent > 1.);
|
|
}
|
|
|
|
return std::make_tuple(any_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename StandardWellsDense<TypeTag>::RatioCheckTuple
|
|
StandardWellsDense<TypeTag>::
|
|
checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
|
|
const WellState& well_state,
|
|
const WellMapEntryType& map_entry) const
|
|
{
|
|
bool water_cut_limit_violated = false;
|
|
int worst_offending_connection = INVALIDCONNECTION;
|
|
bool last_connection = false;
|
|
double violation_extent = -1.0;
|
|
|
|
const int np = well_state.numPhases();
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
const int well_number = map_entry[0];
|
|
|
|
assert(active_[Oil]);
|
|
assert(active_[Water]);
|
|
|
|
const double oil_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Oil ] ];
|
|
const double water_rate = well_state.wellRates()[well_number * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_rate = oil_rate + water_rate;
|
|
double water_cut;
|
|
if (std::abs(liquid_rate) != 0.) {
|
|
water_cut = water_rate / liquid_rate;
|
|
} else {
|
|
water_cut = 0.0;
|
|
}
|
|
|
|
const double max_water_cut_limit = econ_production_limits.maxWaterCut();
|
|
if (water_cut > max_water_cut_limit) {
|
|
water_cut_limit_violated = true;
|
|
}
|
|
|
|
if (water_cut_limit_violated) {
|
|
// need to handle the worst_offending_connection
|
|
const int perf_start = map_entry[1];
|
|
const int perf_number = map_entry[2];
|
|
|
|
std::vector<double> water_cut_perf(perf_number);
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
const int i_perf = perf_start + perf;
|
|
const double oil_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Oil ] ];
|
|
const double water_perf_rate = well_state.perfPhaseRates()[i_perf * np + pu.phase_pos[ Water ] ];
|
|
const double liquid_perf_rate = oil_perf_rate + water_perf_rate;
|
|
if (std::abs(liquid_perf_rate) != 0.) {
|
|
water_cut_perf[perf] = water_perf_rate / liquid_perf_rate;
|
|
} else {
|
|
water_cut_perf[perf] = 0.;
|
|
}
|
|
}
|
|
|
|
last_connection = (perf_number == 1);
|
|
if (last_connection) {
|
|
worst_offending_connection = 0;
|
|
violation_extent = water_cut_perf[0] / max_water_cut_limit;
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
double max_water_cut_perf = 0.;
|
|
for (int perf = 0; perf < perf_number; ++perf) {
|
|
if (water_cut_perf[perf] > max_water_cut_perf) {
|
|
worst_offending_connection = perf;
|
|
max_water_cut_perf = water_cut_perf[perf];
|
|
}
|
|
}
|
|
|
|
assert(max_water_cut_perf != 0.);
|
|
assert((worst_offending_connection >= 0) && (worst_offending_connection < perf_number));
|
|
|
|
violation_extent = max_water_cut_perf / max_water_cut_limit;
|
|
}
|
|
|
|
return std::make_tuple(water_cut_limit_violated, last_connection, worst_offending_connection, violation_extent);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
updateWellStateWithTarget(const WellControls* wc,
|
|
const int current,
|
|
const int well_index,
|
|
WellState& xw) const
|
|
{
|
|
// number of phases
|
|
const int np = wells().number_of_phases;
|
|
// Updating well state and primary variables.
|
|
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
|
|
const double target = well_controls_iget_target(wc, current);
|
|
const double* distr = well_controls_iget_distr(wc, current);
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case BHP:
|
|
xw.bhp()[well_index] = target;
|
|
// TODO: similar to the way below to handle THP
|
|
// we should not something related to thp here when there is thp constraint
|
|
break;
|
|
|
|
case THP: {
|
|
xw.thp()[well_index] = target;
|
|
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = xw.wellRates()[well_index*np + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = xw.wellRates()[well_index*np + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = xw.wellRates()[well_index*np + pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(wc, current);
|
|
const double& thp = well_controls_iget_target(wc, current);
|
|
const double& alq = well_controls_iget_alq(wc, current);
|
|
|
|
//Set *BHP* target by calculating bhp from THP
|
|
const WellType& well_type = wells().type[well_index];
|
|
|
|
// pick the density in the top layer
|
|
const int perf = wells().well_connpos[well_index];
|
|
const double rho = well_perforation_densities_[perf];
|
|
|
|
if (well_type == INJECTOR) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
rho, gravity_);
|
|
|
|
xw.bhp()[well_index] = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
}
|
|
else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case RESERVOIR_RATE: // intentional fall-through
|
|
case SURFACE_RATE:
|
|
// checking the number of the phases under control
|
|
int numPhasesWithTargetsUnderThisControl = 0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
numPhasesWithTargetsUnderThisControl += 1;
|
|
}
|
|
}
|
|
|
|
assert(numPhasesWithTargetsUnderThisControl > 0);
|
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
if (well_type == INJECTOR) {
|
|
// assign target value as initial guess for injectors
|
|
// only handles single phase control at the moment
|
|
assert(numPhasesWithTargetsUnderThisControl == 1);
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.) {
|
|
xw.wellRates()[np*well_index + phase] = target / distr[phase];
|
|
} else {
|
|
xw.wellRates()[np * well_index + phase] = 0.;
|
|
}
|
|
}
|
|
} else if (well_type == PRODUCER) {
|
|
// update the rates of phases under control based on the target,
|
|
// and also update rates of phases not under control to keep the rate ratio,
|
|
// assuming the mobility ratio does not change for the production wells
|
|
double original_rates_under_phase_control = 0.0;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
original_rates_under_phase_control += xw.wellRates()[np * well_index + phase] * distr[phase];
|
|
}
|
|
}
|
|
|
|
if (original_rates_under_phase_control != 0.0 ) {
|
|
double scaling_factor = target / original_rates_under_phase_control;
|
|
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
xw.wellRates()[np * well_index + phase] *= scaling_factor;
|
|
}
|
|
} else { // scaling factor is not well defied when original_rates_under_phase_control is zero
|
|
// separating targets equally between phases under control
|
|
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided / distr[phase];
|
|
} else {
|
|
// this only happens for SURFACE_RATE control
|
|
xw.wellRates()[np * well_index + phase] = target_rate_divided;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
|
|
break;
|
|
} // end of switch
|
|
|
|
|
|
std::vector<double> g = {1.0, 1.0, 0.01};
|
|
if (well_controls_iget_type(wc, current) == RESERVOIR_RATE) {
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
g[phase] = distr[phase];
|
|
}
|
|
}
|
|
|
|
// the number of wells
|
|
const int nw = wells().number_of_wells;
|
|
|
|
switch (well_controls_iget_type(wc, current)) {
|
|
case THP:
|
|
case BHP: {
|
|
const WellType& well_type = wells().type[well_index];
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = 0.0;
|
|
if (well_type == INJECTOR) {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += xw.wellRates()[np*well_index + p] * wells().comp_frac[np*well_index + p];
|
|
}
|
|
} else {
|
|
for (int p = 0; p < np; ++p) {
|
|
xw.wellSolutions()[nw*XvarWell + well_index] += g[p] * xw.wellRates()[np*well_index + p];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case RESERVOIR_RATE: // Intentional fall-through
|
|
case SURFACE_RATE:
|
|
xw.wellSolutions()[nw*XvarWell + well_index] = xw.bhp()[well_index];
|
|
break;
|
|
} // end of switch
|
|
|
|
double tot_well_rate = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
tot_well_rate += g[p] * xw.wellRates()[np*well_index + p];
|
|
}
|
|
if(std::abs(tot_well_rate) > 0) {
|
|
if (active_[ Water ]) {
|
|
xw.wellSolutions()[WFrac*nw + well_index] = g[Water] * xw.wellRates()[np*well_index + Water] / tot_well_rate;
|
|
}
|
|
if (active_[ Gas ]) {
|
|
xw.wellSolutions()[GFrac*nw + well_index] = g[Gas] * (xw.wellRates()[np*well_index + Gas] - xw.solventWellRate(well_index)) / tot_well_rate ;
|
|
}
|
|
if (has_solvent_) {
|
|
xw.wellSolutions()[SFrac*nw + well_index] = g[Gas] * xw.solventWellRate(well_index) / tot_well_rate ;
|
|
}
|
|
} else {
|
|
const WellType& well_type = wells().type[well_index];
|
|
if (well_type == INJECTOR) {
|
|
// only single phase injection handled
|
|
if (active_[Water]) {
|
|
if (distr[Water] > 0.0) {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0;
|
|
} else {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (active_[Gas]) {
|
|
if (distr[Gas] > 0.0) {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 - wsolvent(well_index);
|
|
if (has_solvent_) {
|
|
xw.wellSolutions()[SFrac * nw + well_index] = wsolvent(well_index);
|
|
}
|
|
} else {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 0.0;
|
|
}
|
|
}
|
|
|
|
// TODO: it is possible to leave injector as a oil well,
|
|
// when F_w and F_g both equals to zero, not sure under what kind of circumstance
|
|
// this will happen.
|
|
} else if (well_type == PRODUCER) { // producers
|
|
if (active_[Water]) {
|
|
xw.wellSolutions()[WFrac * nw + well_index] = 1.0 / np;
|
|
}
|
|
if (active_[Gas]) {
|
|
xw.wellSolutions()[GFrac * nw + well_index] = 1.0 / np;
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
StandardWellsDense<TypeTag>::
|
|
wellHasTHPConstraints(const int well_index) const
|
|
{
|
|
const WellControls* well_control = wells().ctrls[well_index];
|
|
const int nwc = well_controls_get_num(well_control);
|
|
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(well_control, ctrl_index) == THP) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellRatesWithBhp(const Simulator& ebosSimulator,
|
|
const EvalWell& bhp,
|
|
const int well_index,
|
|
std::vector<double>& well_flux) const
|
|
{
|
|
const int np = wells().number_of_phases;
|
|
const int numComp = numComponents();
|
|
well_flux.resize(np, 0.0);
|
|
|
|
const bool allow_cf = allow_cross_flow(well_index, ebosSimulator);
|
|
for (int perf = wells().well_connpos[well_index]; perf < wells().well_connpos[well_index + 1]; ++perf) {
|
|
const int cell_index = wells().well_cells[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_index, /*timeIdx=*/ 0));
|
|
// flux for each perforation
|
|
std::vector<EvalWell> cq_s(numComp, 0.0);
|
|
std::vector<EvalWell> mob(numComp, 0.0);
|
|
getMobility(ebosSimulator, perf, cell_index, mob);
|
|
computeWellFlux(well_index, wells().WI[perf], intQuants, mob, bhp,
|
|
wellPerforationPressureDiffs()[perf], allow_cf, cq_s);
|
|
|
|
for(int p = 0; p < np; ++p) {
|
|
well_flux[p] += cq_s[p].value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWellsDense<TypeTag>::
|
|
mostStrictBhpFromBhpLimits(const int well_index) const
|
|
{
|
|
double bhp;
|
|
|
|
// type of the well, INJECTOR or PRODUCER
|
|
const WellType& well_type = wells().type[well_index];
|
|
// initial bhp value, making the value not usable
|
|
switch(well_type) {
|
|
case INJECTOR:
|
|
bhp = std::numeric_limits<double>::max();
|
|
break;
|
|
case PRODUCER:
|
|
bhp = -std::numeric_limits<double>::max();
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]);
|
|
}
|
|
|
|
// the well controls
|
|
const WellControls* well_control = wells().ctrls[well_index];
|
|
// The number of the well controls/constraints
|
|
const int nwc = well_controls_get_num(well_control);
|
|
|
|
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
|
// finding a BHP constraint
|
|
if (well_controls_iget_type(well_control, ctrl_index) == BHP) {
|
|
// get the bhp constraint value, it should always be postive assummingly
|
|
const double bhp_target = well_controls_iget_target(well_control, ctrl_index);
|
|
|
|
switch(well_type) {
|
|
case INJECTOR: // using the lower bhp contraint from Injectors
|
|
if (bhp_target < bhp) {
|
|
bhp = bhp_target;
|
|
}
|
|
break;
|
|
case PRODUCER:
|
|
if (bhp_target > bhp) {
|
|
bhp = bhp_target;
|
|
}
|
|
break;
|
|
default:
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type for well " << wells().name[well_index]);
|
|
} // end of switch
|
|
}
|
|
}
|
|
|
|
return bhp;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
std::vector<double>
|
|
StandardWellsDense<TypeTag>::
|
|
computeWellPotentialWithTHP(const Simulator& ebosSimulator,
|
|
const int well_index,
|
|
const double initial_bhp, // bhp from BHP constraints
|
|
const std::vector<double>& initial_potential) const
|
|
{
|
|
// TODO: pay attention to the situation that finally the potential is calculated based on the bhp control
|
|
// TODO: should we consider the bhp constraints during the iterative process?
|
|
const int np = wells().number_of_phases;
|
|
|
|
assert( np == int(initial_potential.size()) );
|
|
|
|
std::vector<double> potentials = initial_potential;
|
|
std::vector<double> old_potentials = potentials; // keeping track of the old potentials
|
|
|
|
double bhp = initial_bhp;
|
|
double old_bhp = bhp;
|
|
|
|
bool converged = false;
|
|
const int max_iteration = 1000;
|
|
const double bhp_tolerance = 1000.; // 1000 pascal
|
|
|
|
int iteration = 0;
|
|
|
|
while ( !converged && iteration < max_iteration ) {
|
|
// for each iteration, we calculate the bhp based on the rates/potentials with thp constraints
|
|
// with considering the bhp value from the bhp limits. At the beginning of each iteration,
|
|
// we initialize the bhp to be the bhp value from the bhp limits. Then based on the bhp values calculated
|
|
// from the thp constraints, we decide the effective bhp value for well potential calculation.
|
|
bhp = initial_bhp;
|
|
|
|
// the well controls
|
|
const WellControls* well_control = wells().ctrls[well_index];
|
|
// The number of the well controls/constraints
|
|
const int nwc = well_controls_get_num(well_control);
|
|
|
|
for (int ctrl_index = 0; ctrl_index < nwc; ++ctrl_index) {
|
|
if (well_controls_iget_type(well_control, ctrl_index) == THP) {
|
|
double aqua = 0.0;
|
|
double liquid = 0.0;
|
|
double vapour = 0.0;
|
|
|
|
const Opm::PhaseUsage& pu = phase_usage_;
|
|
|
|
if (active_[ Water ]) {
|
|
aqua = potentials[pu.phase_pos[ Water ] ];
|
|
}
|
|
if (active_[ Oil ]) {
|
|
liquid = potentials[pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (active_[ Gas ]) {
|
|
vapour = potentials[pu.phase_pos[ Gas ] ];
|
|
}
|
|
|
|
const int vfp = well_controls_iget_vfp(well_control, ctrl_index);
|
|
const double thp = well_controls_iget_target(well_control, ctrl_index);
|
|
const double alq = well_controls_iget_alq(well_control, ctrl_index);
|
|
|
|
// Calculating the BHP value based on THP
|
|
// TODO: check whether it is always correct to do calculation based on the depth of the first perforation.
|
|
const int first_perf = wells().well_connpos[well_index]; //first perforation
|
|
|
|
const WellType& well_type = wells().type[well_index];
|
|
if (well_type == INJECTOR) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), well_index, vfp_properties_->getInj()->getTable(vfp)->getDatumDepth(),
|
|
wellPerforationDensities()[first_perf], gravity_);
|
|
const double bhp_calculated = vfp_properties_->getInj()->bhp(vfp, aqua, liquid, vapour, thp) - dp;
|
|
// apply the strictest of the bhp controlls i.e. smallest bhp for injectors
|
|
if (bhp_calculated < bhp) {
|
|
bhp = bhp_calculated;
|
|
}
|
|
}
|
|
else if (well_type == PRODUCER) {
|
|
const double dp = wellhelpers::computeHydrostaticCorrection(
|
|
wells(), well_index, vfp_properties_->getProd()->getTable(vfp)->getDatumDepth(),
|
|
wellPerforationDensities()[first_perf], gravity_);
|
|
const double bhp_calculated = vfp_properties_->getProd()->bhp(vfp, aqua, liquid, vapour, thp, alq) - dp;
|
|
// apply the strictest of the bhp controlls i.e. largest bhp for producers
|
|
if (bhp_calculated > bhp) {
|
|
bhp = bhp_calculated;
|
|
}
|
|
} else {
|
|
OPM_THROW(std::logic_error, "Expected PRODUCER or INJECTOR type of well");
|
|
}
|
|
}
|
|
}
|
|
|
|
// there should be always some available bhp/thp constraints there
|
|
if (std::isinf(bhp) || std::isnan(bhp)) {
|
|
OPM_THROW(std::runtime_error, "Unvalid bhp value obtained during the potential calculation for well " << wells().name[well_index]);
|
|
}
|
|
|
|
converged = std::abs(old_bhp - bhp) < bhp_tolerance;
|
|
|
|
computeWellRatesWithBhp(ebosSimulator, bhp, well_index, potentials);
|
|
|
|
// checking whether the potentials have valid values
|
|
for (const double value : potentials) {
|
|
if (std::isinf(value) || std::isnan(value)) {
|
|
OPM_THROW(std::runtime_error, "Unvalid potential value obtained during the potential calculation for well " << wells().name[well_index]);
|
|
}
|
|
}
|
|
|
|
if (!converged) {
|
|
old_bhp = bhp;
|
|
for (int p = 0; p < np; ++p) {
|
|
// TODO: improve the interpolation, will it always be valid with the way below?
|
|
// TODO: finding better paramters, better iteration strategy for better convergence rate.
|
|
const double potential_update_damping_factor = 0.001;
|
|
potentials[p] = potential_update_damping_factor * potentials[p] + (1.0 - potential_update_damping_factor) * old_potentials[p];
|
|
old_potentials[p] = potentials[p];
|
|
}
|
|
}
|
|
|
|
++iteration;
|
|
}
|
|
|
|
if (!converged) {
|
|
OPM_THROW(std::runtime_error, "Failed in getting converged for the potential calculation for well " << wells().name[well_index]);
|
|
}
|
|
|
|
return potentials;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWellsDense<TypeTag>::
|
|
wsolvent(const int well_index) const {
|
|
|
|
if (!has_solvent_) {
|
|
return 0.0;
|
|
}
|
|
|
|
// loop over all wells until we find the well with the matching name
|
|
for (const auto& well : wells_ecl_) {
|
|
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
|
|
continue;
|
|
}
|
|
|
|
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
|
|
if (injection.injectorType == WellInjector::GAS) {
|
|
|
|
double solventFraction = well->getSolventFraction(current_timeIdx_);
|
|
|
|
// Look until we find the correct well
|
|
if (well->name() == wells().name[well_index]) {
|
|
return solventFraction;
|
|
}
|
|
}
|
|
}
|
|
// we didn't find it return 0;
|
|
assert(false);
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
double
|
|
StandardWellsDense<TypeTag>::
|
|
wpolymer(const int well_index) const {
|
|
|
|
if (!has_polymer_) {
|
|
return 0.0;
|
|
}
|
|
|
|
// loop over all wells until we find the well with the matching name
|
|
for (const auto& well : wells_ecl_) {
|
|
if (well->getStatus( current_timeIdx_ ) == WellCommon::SHUT) {
|
|
continue;
|
|
}
|
|
|
|
WellInjectionProperties injection = well->getInjectionProperties(current_timeIdx_);
|
|
WellPolymerProperties polymer = well->getPolymerProperties(current_timeIdx_);
|
|
if (injection.injectorType == WellInjector::WATER) {
|
|
|
|
double polymerFraction = polymer.m_polymerConcentration;
|
|
|
|
// Look until we find the correct well
|
|
if (well->name() == wells().name[well_index]) {
|
|
return polymerFraction;
|
|
}
|
|
}
|
|
}
|
|
// we didn't find it return 0;
|
|
assert(false);
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
setupCompressedToCartesian(const int* global_cell, int number_of_cells, std::map<int,int>& cartesian_to_compressed ) const
|
|
{
|
|
if (global_cell) {
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
cartesian_to_compressed.insert(std::make_pair(global_cell[i], i));
|
|
}
|
|
}
|
|
else {
|
|
for (int i = 0; i < number_of_cells; ++i) {
|
|
cartesian_to_compressed.insert(std::make_pair(i, i));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
StandardWellsDense<TypeTag>::
|
|
computeRepRadiusPerfLength(const auto& grid)
|
|
{
|
|
|
|
// TODO, the function does not work for parallel running
|
|
// to be fixed later.
|
|
int number_of_cells = Opm::UgGridHelpers::numCells(grid);
|
|
const int* global_cell = Opm::UgGridHelpers::globalCell(grid);
|
|
const int* cart_dims = Opm::UgGridHelpers::cartDims(grid);
|
|
auto cell_to_faces = Opm::UgGridHelpers::cell2Faces(grid);
|
|
auto begin_face_centroids = Opm::UgGridHelpers::beginFaceCentroids(grid);
|
|
|
|
if (wells_ecl_.size() == 0) {
|
|
OPM_MESSAGE("No wells specified in Schedule section, "
|
|
"initializing no wells");
|
|
return;
|
|
}
|
|
|
|
const int nw = wells().number_of_wells;
|
|
const int nperf = wells().well_connpos[nw];
|
|
|
|
const size_t timeStep = current_timeIdx_;
|
|
|
|
wells_rep_radius_.clear();
|
|
wells_perf_length_.clear();
|
|
wells_bore_diameter_.clear();
|
|
|
|
wells_rep_radius_.reserve(nperf);
|
|
wells_perf_length_.reserve(nperf);
|
|
wells_bore_diameter_.reserve(nperf);
|
|
|
|
std::map<int,int> cartesian_to_compressed;
|
|
|
|
setupCompressedToCartesian(global_cell, number_of_cells,
|
|
cartesian_to_compressed);
|
|
|
|
int well_index = 0;
|
|
|
|
for (auto wellIter= wells_ecl_.begin(); wellIter != wells_ecl_.end(); ++wellIter) {
|
|
const auto* well = (*wellIter);
|
|
|
|
if (well->getStatus(timeStep) == WellCommon::SHUT) {
|
|
continue;
|
|
}
|
|
{ // COMPDAT handling
|
|
const auto& completionSet = well->getCompletions(timeStep);
|
|
for (size_t c=0; c<completionSet.size(); c++) {
|
|
const auto& completion = completionSet.get(c);
|
|
if (completion.getState() == WellCompletion::OPEN) {
|
|
int i = completion.getI();
|
|
int j = completion.getJ();
|
|
int k = completion.getK();
|
|
|
|
const int* cpgdim = cart_dims;
|
|
int cart_grid_indx = i + cpgdim[0]*(j + cpgdim[1]*k);
|
|
std::map<int, int>::const_iterator cgit = cartesian_to_compressed.find(cart_grid_indx);
|
|
if (cgit == cartesian_to_compressed.end()) {
|
|
OPM_THROW(std::runtime_error, "Cell with i,j,k indices " << i << ' ' << j << ' '
|
|
<< k << " not found in grid (well = " << well->name() << ')');
|
|
}
|
|
int cell = cgit->second;
|
|
|
|
{
|
|
double radius = 0.5*completion.getDiameter();
|
|
if (radius <= 0.0) {
|
|
radius = 0.5*unit::feet;
|
|
OPM_MESSAGE("**** Warning: Well bore internal radius set to " << radius);
|
|
}
|
|
|
|
const std::array<double, 3> cubical =
|
|
WellsManagerDetail::getCubeDim<3>(cell_to_faces, begin_face_centroids, cell);
|
|
|
|
WellCompletion::DirectionEnum direction = completion.getDirection();
|
|
|
|
double re; // area equivalent radius of the grid block
|
|
double perf_length; // the length of the well perforation
|
|
|
|
switch (direction) {
|
|
case Opm::WellCompletion::DirectionEnum::X:
|
|
re = std::sqrt(cubical[1] * cubical[2] / M_PI);
|
|
perf_length = cubical[0];
|
|
break;
|
|
case Opm::WellCompletion::DirectionEnum::Y:
|
|
re = std::sqrt(cubical[0] * cubical[2] / M_PI);
|
|
perf_length = cubical[1];
|
|
break;
|
|
case Opm::WellCompletion::DirectionEnum::Z:
|
|
re = std::sqrt(cubical[0] * cubical[1] / M_PI);
|
|
perf_length = cubical[2];
|
|
break;
|
|
default:
|
|
OPM_THROW(std::runtime_error, " Dirtecion of well is not supported ");
|
|
}
|
|
|
|
double repR = std::sqrt(re * radius);
|
|
wells_rep_radius_.push_back(repR);
|
|
wells_perf_length_.push_back(perf_length);
|
|
wells_bore_diameter_.push_back(2. * radius);
|
|
}
|
|
} else {
|
|
if (completion.getState() != WellCompletion::SHUT) {
|
|
OPM_THROW(std::runtime_error, "Completion state: " << WellCompletion::StateEnum2String( completion.getState() ) << " not handled");
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
well_index++;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|