opm-simulators/opm/autodiff/BlackoilSolventModel_impl.hpp
Tor Harald Sandve 554f1ec9c6 Add comments to the well equations
Gas and solvent is combinded and solved together
The input in the well equation is then the
total gas phase = hydro carbon gas + solvent gas
This may need to be reconsidered later, as the model
is tested.
2015-08-18 07:24:08 +02:00

701 lines
29 KiB
C++

/*
Copyright 2015 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#define OPM_BLACKOILSOLVENTMODEL_IMPL_HEADER_INCLUDED
#include <opm/autodiff/BlackoilSolventModel.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <limits>
namespace Opm {
namespace detail {
template <class PU>
int solventPos(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
int pos = 0;
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[phase]) {
pos++;
}
}
return pos;
}
} // namespace detail
template <class Grid>
BlackoilSolventModel<Grid>::BlackoilSolventModel(const typename Base::ModelParameters& param,
const Grid& grid,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo,
const RockCompressibility* rock_comp_props,
const SolventPropsAdFromDeck& solvent_props,
const Wells* wells,
const NewtonIterationBlackoilInterface& linsolver,
const EclipseStateConstPtr eclState,
const bool has_disgas,
const bool has_vapoil,
const bool terminal_output,
const bool has_solvent)
: Base(param, grid, fluid, geo, rock_comp_props, wells, linsolver,
eclState, has_disgas, has_vapoil, terminal_output),
has_solvent_(has_solvent),
solvent_pos_(detail::solventPos(fluid.phaseUsage())),
solvent_props_(solvent_props)
{
if (has_solvent_) {
// If deck has solvent, residual_ should contain solvent equation.
rq_.resize(fluid_.numPhases() + 1);
residual_.material_balance_eq.resize(fluid_.numPhases() + 1, ADB::null());
assert(solvent_pos_ == fluid_.numPhases());
if (has_vapoil_) {
OPM_THROW(std::runtime_error, "Solvent option only works with dead gas\n");
}
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::makeConstantState(SolutionState& state) const
{
Base::makeConstantState(state);
state.solvent_saturation = ADB::constant(state.solvent_saturation.value());
}
template <class Grid>
std::vector<V>
BlackoilSolventModel<Grid>::variableStateInitials(const ReservoirState& x,
const WellState& xw) const
{
std::vector<V> vars0 = Base::variableStateInitials(x, xw);
assert(int(vars0.size()) == fluid_.numPhases() + 2);
// Initial polymer concentration.
if (has_solvent_) {
assert (not x.solvent_saturation().empty());
const int nc = x.solvent_saturation().size();
const V ss = Eigen::Map<const V>(&x.solvent_saturation()[0], nc);
// Solvent belongs after other reservoir vars but before well vars.
auto solvent_pos = vars0.begin() + fluid_.numPhases();
assert(solvent_pos == vars0.end() - 2);
vars0.insert(solvent_pos, ss);
}
return vars0;
}
template <class Grid>
std::vector<int>
BlackoilSolventModel<Grid>::variableStateIndices() const
{
std::vector<int> ind = Base::variableStateIndices();
assert(ind.size() == 5);
if (has_solvent_) {
ind.resize(6);
// Solvent belongs after other reservoir vars but before well vars.
ind[Solvent] = fluid_.numPhases();
// Solvent is pushing back the well vars.
++ind[Qs];
++ind[Bhp];
}
return ind;
}
template <class Grid>
typename BlackoilSolventModel<Grid>::SolutionState
BlackoilSolventModel<Grid>::variableStateExtractVars(const ReservoirState& x,
const std::vector<int>& indices,
std::vector<ADB>& vars) const
{
SolutionState state = Base::variableStateExtractVars(x, indices, vars);
if (has_solvent_) {
state.solvent_saturation = std::move(vars[indices[Solvent]]);
if (active_[ Oil ]) {
// Note that so is never a primary variable.
const Opm::PhaseUsage pu = fluid_.phaseUsage();
state.saturation[pu.phase_pos[ Oil ]] -= state.solvent_saturation;
}
}
return state;
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeAccum(const SolutionState& state,
const int aix )
{
Base::computeAccum(state, aix);
// Compute accumulation of the solvent
if (has_solvent_) {
const ADB& press = state.pressure;
const ADB& ss = state.solvent_saturation;
const ADB pv_mult = poroMult(press); // also computed in Base::computeAccum, could be optimized.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& pg = state.canonical_phase_pressures[pu.phase_pos[Gas]];
rq_[solvent_pos_].b = solvent_props_.bSolvent(pg,cells_);
rq_[solvent_pos_].accum[aix] = pv_mult * rq_[solvent_pos_].b * ss;
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::
assembleMassBalanceEq(const SolutionState& state)
{
Base::assembleMassBalanceEq(state);
if (has_solvent_) {
residual_.material_balance_eq[ solvent_pos_ ] =
pvdt_ * (rq_[solvent_pos_].accum[1] - rq_[solvent_pos_].accum[0])
+ ops_.div*rq_[solvent_pos_].mflux;
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::addWellContributionToMassBalanceEq(const std::vector<ADB>& cq_s,
const SolutionState& state,
WellState& xw)
{
// Add well contributions to solvent mass balance equation
Base::addWellContributionToMassBalanceEq(cq_s, state, xw);
if (has_solvent_) {
const int nperf = wells().well_connpos[wells().number_of_wells];
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value(), Selector<double>::Zero);
V F_solvent = zero_selector.select(ss, ss / (ss + sg)).value();
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
const int nw = wells().number_of_wells;
V wellSolventFraction = Eigen::Map<const V>(&xw.solventFraction()[0], nperf);
for (int w = 0; w < nw; ++w) {
if(wells().type[w] == PRODUCER) {
for (int perf = wells().well_connpos[w]; perf < wells().well_connpos[w+1]; ++perf) {
wellSolventFraction[perf] = F_solvent[well_cells[perf]];
}
}
}
const ADB& rs_perfcells = subset(state.rs, well_cells);
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
int oil_pos = fluid_.phaseUsage().phase_pos[Oil];
// remove contribution from the dissolved gas.
// TODO compensate for gas in the oil phase
assert(!has_vapoil_);
const ADB cq_s_solvent = wellSolventFraction * (cq_s[gas_pos] - rs_perfcells * cq_s[oil_pos]);
// Solvent contribution to the mass balance equation is given as a fraction
// of the gas contribution.
residual_.material_balance_eq[solvent_pos_] -= superset(cq_s_solvent, well_cells, nc);
// The gas contribution must be reduced accordingly for the total contribution to be
// the same.
residual_.material_balance_eq[gas_pos] += superset(cq_s_solvent, well_cells, nc);
}
}
template <class Grid>
void BlackoilSolventModel<Grid>::updateState(const V& dx,
ReservoirState& reservoir_state,
WellState& well_state)
{
if (has_solvent_) {
// Extract solvent change.
const int np = fluid_.numPhases();
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const V zero = V::Zero(nc);
const int solvent_start = nc * np;
const V dss = subset(dx, Span(nc, 1, solvent_start));
// Create new dx with the dss part deleted.
V modified_dx = V::Zero(dx.size() - nc);
modified_dx.head(solvent_start) = dx.head(solvent_start);
const int tail_len = dx.size() - solvent_start - nc;
modified_dx.tail(tail_len) = dx.tail(tail_len);
// Call base version.
Base::updateState(modified_dx, reservoir_state, well_state);
// Update solvent.
const V ss_old = Eigen::Map<const V>(&reservoir_state.solvent_saturation()[0], nc, 1);
const V ss = (ss_old - dss).max(zero);
std::copy(&ss[0], &ss[0] + nc, reservoir_state.solvent_saturation().begin());
// adjust oil saturation
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const int oilpos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
reservoir_state.saturation()[c*np + oilpos] = 1 - ss[c];
if (pu.phase_used[ Gas ]) {
const int gaspos = pu.phase_pos[ Gas ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + gaspos];
}
if (pu.phase_used[ Water ]) {
const int waterpos = pu.phase_pos[ Water ];
reservoir_state.saturation()[c*np + oilpos] -= reservoir_state.saturation()[c*np + waterpos];
}
}
} else {
// Just forward call to base version.
Base::updateState(dx, reservoir_state, well_state);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& phasePressure,
const SolutionState& state)
{
Base::computeMassFlux(actph, transi, kr, phasePressure, state);
const int canonicalPhaseIdx = canph_[ actph ];
if (canonicalPhaseIdx == Gas) {
if (has_solvent_) {
const int nc = Opm::UgGridHelpers::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB zero = ADB::constant(V::Zero(nc));
const ADB& ss = state.solvent_saturation;
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
Selector<double> zero_selector(ss.value(), Selector<double>::Zero);
ADB F_solvent = zero_selector.select(ss, ss / (ss + sg));
V ones = V::Constant(nc, 1.0);
const ADB tr_mult = transMult(state.pressure);
const ADB mu = solvent_props_.muSolvent(phasePressure,cells_);
rq_[solvent_pos_].mob = solvent_props_.solventRelPermMultiplier(F_solvent, cells_) * tr_mult * kr / mu;
rq_[actph].mob = solvent_props_.gasRelPermMultiplier( (ones - F_solvent) , cells_) * rq_[actph].mob;
const ADB rho_solvent = solvent_props_.solventSurfaceDensity(cells_) * rq_[solvent_pos_].b;
const ADB rhoavg_solvent = ops_.caver * rho_solvent;
rq_[ solvent_pos_ ].dh = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg_solvent * (ops_.ngrad * geo_.z().matrix()));
UpwindSelector<double> upwind(grid_, ops_, rq_[solvent_pos_].dh.value());
// Compute solvent flux.
rq_[solvent_pos_].mflux = upwind.select(rq_[solvent_pos_].b * rq_[solvent_pos_].mob) * (transi * rq_[solvent_pos_].dh);
}
}
}
template <class Grid>
std::vector<ADB>
BlackoilSolventModel<Grid>::computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const ADB zero = ADB::constant(V::Zero(nc));
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: zero);
const ADB& so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: zero);
const ADB& sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: zero);
if (has_solvent_) {
const ADB& ss = state.solvent_saturation;
return fluid_.relperm(sw, so, sg+ss, cells_);
} else {
return fluid_.relperm(sw, so, sg, cells_);
}
}
template <class Grid>
void
BlackoilSolventModel<Grid>::assemble(const ReservoirState& reservoir_state,
WellState& well_state,
const bool initial_assembly)
{
using namespace Opm::AutoDiffGrid;
// Possibly switch well controls and updating well state to
// get reasonable initial conditions for the wells
updateWellControls(well_state);
// Create the primary variables.
SolutionState state = variableState(reservoir_state, well_state);
if (initial_assembly) {
// Create the (constant, derivativeless) initial state.
SolutionState state0 = state;
makeConstantState(state0);
// Compute initial accumulation contributions
// and well connection pressures.
computeAccum(state0, 0);
computeWellConnectionPressures(state0, well_state);
}
// -------- Mass balance equations --------
assembleMassBalanceEq(state);
// -------- Well equations ----------
if ( ! wellsActive() ) {
return;
}
V aliveWells;
const int np = wells().number_of_phases;
std::vector<ADB> cq_s(np, ADB::null());
const int nw = wells().number_of_wells;
const int nperf = wells().well_connpos[nw];
const std::vector<int> well_cells(wells().well_cells, wells().well_cells + nperf);
std::vector<ADB> mob_perfcells(np, ADB::null());
std::vector<ADB> b_perfcells(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
mob_perfcells[phase] = subset(rq_[phase].mob, well_cells);
b_perfcells[phase] = subset(rq_[phase].b, well_cells);
}
if (has_solvent_) {
int gas_pos = fluid_.phaseUsage().phase_pos[Gas];
// Gas and solvent is combinded and solved together
// The input in the well equation is then the
// total gas phase = hydro carbon gas + solvent gas
// This may need to be reconsidered later, as the model
// is tested.
mob_perfcells[gas_pos] += subset(rq_[solvent_pos_].mob, well_cells);
b_perfcells[gas_pos] += subset(rq_[solvent_pos_].b, well_cells);
}
if (param_.solve_welleq_initially_ && initial_assembly) {
// solve the well equations as a pre-processing step
Base::solveWellEq(mob_perfcells, b_perfcells, state, well_state);
}
Base::computeWellFlux(state, mob_perfcells, b_perfcells, aliveWells, cq_s);
Base::updatePerfPhaseRatesAndPressures(cq_s, state, well_state);
Base::addWellFluxEq(cq_s, state);
addWellContributionToMassBalanceEq(cq_s, state, well_state);
Base::addWellControlEq(state, well_state, aliveWells);
}
template <class Grid>
double
BlackoilSolventModel<Grid>::convergenceReduction(const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& B,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& tempV,
const Eigen::Array<double, Eigen::Dynamic, MaxNumPhases+1>& R,
std::array<double,MaxNumPhases+1>& R_sum,
std::array<double,MaxNumPhases+1>& maxCoeff,
std::array<double,MaxNumPhases+1>& B_avg,
std::vector<double>& maxNormWell,
int nc,
int nw) const
{
// Do the global reductions
#if HAVE_MPI
if ( linsolver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(linsolver_.parallelInformation());
// Compute the global number of cells and porevolume
std::vector<int> v(nc, 1);
auto nc_and_pv = std::tuple<int, double>(0, 0.0);
auto nc_and_pv_operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<int>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
auto nc_and_pv_containers = std::make_tuple(v, geo_.poreVolume());
info.computeReduction(nc_and_pv_containers, nc_and_pv_operators, nc_and_pv);
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if ((idx == MaxNumPhases && has_solvent_) || active_[idx]) { // Dealing with solvent *or* an active phase.
auto values = std::tuple<double,double,double>(0.0 ,0.0 ,0.0);
auto containers = std::make_tuple(B.col(idx),
tempV.col(idx),
R.col(idx));
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalMaxFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
info.computeReduction(containers, operators, values);
B_avg[idx] = std::get<0>(values)/std::get<0>(nc_and_pv);
maxCoeff[idx] = std::get<1>(values);
R_sum[idx] = std::get<2>(values);
if (idx != MaxNumPhases) { // We do not compute a well flux residual for solvent.
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
else
{
maxNormWell[idx] = R_sum[idx] = B_avg[idx] = maxCoeff[idx] = 0.0;
}
}
info.communicator().max(&maxNormWell[0], MaxNumPhases+1);
// Compute pore volume
return std::get<1>(nc_and_pv);
}
else
#endif
{
for ( int idx=0; idx<MaxNumPhases+1; ++idx )
{
if (((idx == MaxNumPhases && has_solvent_) || active_[idx]) ) { // Dealing with solvent *or* an active phase.
B_avg[idx] = B.col(idx).sum()/nc;
maxCoeff[idx] = tempV.col(idx).maxCoeff();
R_sum[idx] = R.col(idx).sum();
}
else
{
R_sum[idx] = B_avg[idx] = maxCoeff[idx] =0.0;
}
if (idx != MaxNumPhases) { // We do not compute a well flux residual for polymer.
maxNormWell[idx] = 0.0;
for ( int w=0; w<nw; ++w ) {
maxNormWell[idx] = std::max(maxNormWell[idx], std::abs(residual_.well_flux_eq.value()[nw*idx + w]));
}
}
}
// Compute total pore volume
return geo_.poreVolume().sum();
}
}
template <class Grid>
bool
BlackoilSolventModel<Grid>::getConvergence(const double dt, const int iteration)
{
const double tol_mb = param_.tolerance_mb_;
const double tol_cnv = param_.tolerance_cnv_;
const double tol_wells = param_.tolerance_wells_;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int nw = wellsActive() ? wells().number_of_wells : 0;
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const V pv = geo_.poreVolume();
const std::vector<PhasePresence> cond = phaseCondition();
std::array<double,MaxNumPhases+1> CNV = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> R_sum = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> B_avg = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> maxCoeff = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases+1> mass_balance_residual = {{0., 0., 0., 0.}};
std::array<double,MaxNumPhases> well_flux_residual = {{0., 0., 0.}};
std::size_t cols = MaxNumPhases+1; // needed to pass the correct type to Eigen
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> B(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> R(nc, cols);
Eigen::Array<V::Scalar, Eigen::Dynamic, MaxNumPhases+1> tempV(nc, cols);
std::vector<double> maxNormWell(MaxNumPhases);
for ( int idx=0; idx<MaxNumPhases; ++idx )
{
if (active_[idx]) {
const int pos = pu.phase_pos[idx];
const ADB& tempB = rq_[pos].b;
B.col(idx) = 1./tempB.value();
R.col(idx) = residual_.material_balance_eq[idx].value();
tempV.col(idx) = R.col(idx).abs()/pv;
}
}
if (has_solvent_) {
const ADB& tempB = rq_[solvent_pos_].b;
B.col(MaxNumPhases) = 1. / tempB.value();
R.col(MaxNumPhases) = residual_.material_balance_eq[solvent_pos_].value();
tempV.col(MaxNumPhases) = R.col(MaxNumPhases).abs()/pv;
}
const double pvSum = convergenceReduction(B, tempV, R, R_sum, maxCoeff, B_avg,
maxNormWell, nc, nw);
bool converged_MB = true;
bool converged_CNV = true;
bool converged_Well = true;
// Finish computation
for ( int idx = 0; idx < (MaxNumPhases + 1) ; ++idx )
{
CNV[idx] = B_avg[idx] * dt * maxCoeff[idx];
mass_balance_residual[idx] = std::abs(B_avg[idx]*R_sum[idx]) * dt / pvSum;
converged_MB = converged_MB && (mass_balance_residual[idx] < tol_mb);
converged_CNV = converged_CNV && (CNV[idx] < tol_cnv);
if (idx != MaxNumPhases) { // No well flux residual for polymer.
well_flux_residual[idx] = B_avg[idx] * maxNormWell[idx];
converged_Well = converged_Well && (well_flux_residual[idx] < tol_wells);
}
}
const double residualWell = detail::infinityNormWell(residual_.well_eq,
linsolver_.parallelInformation());
converged_Well = converged_Well && (residualWell < Opm::unit::barsa);
const bool converged = converged_MB && converged_CNV && converged_Well;
// if one of the residuals is NaN, throw exception, so that the solver can be restarted
if (std::isnan(mass_balance_residual[Water]) || mass_balance_residual[Water] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Oil]) || mass_balance_residual[Oil] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Gas] > maxResidualAllowed() ||
std::isnan(mass_balance_residual[Gas]) || mass_balance_residual[Solvent] > maxResidualAllowed() ||
std::isnan(CNV[Water]) || CNV[Water] > maxResidualAllowed() ||
std::isnan(CNV[Oil]) || CNV[Oil] > maxResidualAllowed() ||
std::isnan(CNV[Gas]) || CNV[Gas] > maxResidualAllowed() ||
std::isnan(CNV[Solvent]) || CNV[Solvent] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Water]) || well_flux_residual[Water] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Oil]) || well_flux_residual[Oil] > maxResidualAllowed() ||
std::isnan(well_flux_residual[Gas]) || well_flux_residual[Gas] > maxResidualAllowed() ||
std::isnan(residualWell) || residualWell > maxResidualAllowed() )
{
OPM_THROW(Opm::NumericalProblem,"One of the residuals is NaN or too large!");
}
if ( terminal_output_ )
{
// Only rank 0 does print to std::cout
if (iteration == 0) {
std::cout << "\nIter MB(WATER) MB(OIL) MB(GAS) MB(SOLVENT) CNVW CNVO CNVG CNVS W-FLUX(W) W-FLUX(O) W-FLUX(G)\n";
}
const std::streamsize oprec = std::cout.precision(3);
const std::ios::fmtflags oflags = std::cout.setf(std::ios::scientific);
std::cout << std::setw(4) << iteration
<< std::setw(11) << mass_balance_residual[Water]
<< std::setw(11) << mass_balance_residual[Oil]
<< std::setw(11) << mass_balance_residual[Gas]
<< std::setw(11) << mass_balance_residual[Solvent]
<< std::setw(11) << CNV[Water]
<< std::setw(11) << CNV[Oil]
<< std::setw(11) << CNV[Gas]
<< std::setw(11) << CNV[Solvent]
<< std::setw(11) << well_flux_residual[Water]
<< std::setw(11) << well_flux_residual[Oil]
<< std::setw(11) << well_flux_residual[Gas]
<< std::endl;
std::cout.precision(oprec);
std::cout.flags(oflags);
}
return converged;
}
}
#endif // OPM_BLACKOILSOLVENT_IMPL_HEADER_INCLUDED